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ABSTRACT

We study the behavior of the NLMS algorithm when the
“noise” (the optimal estimation error)���� is uncorrelated,
but dependentof the regressor sequence

�
��
�

. This is the
most general situation in applications, arising, for example,
when linear estimation is applied to systems with nonlinear-
ities.

We show that, unlike the LMS algorithm, NLMS com-
putes biased estimatesevenif the step-size� is small and�
��
�

is iid, but���� is not independent of��. We provide
expressions for the bias, the MSD, and the MSE, which are
also valid for the case of correlated regressor sequences.

1. INTRODUCTION

In this paper we analyze the behavior of the normalized-
LMS (NLMS) algorithm in the general case where both the
regressor and noise sequences are correlated in time. Our
expressions hold even when the noise and regressor arenot
independent one from the other. This includes the case of
non-Gaussian variables, as well as Gaussian variables going
through some kinds of nonlinearities. In this section we pro-
vide a few motivating examples, and compare our analysis
with previous results in the literature.

1.1. Optimum linear estimation and the NLMS algo-
rithm

Given zero-mean, stationary sequences
�
���� � IR

�
(de-

sired sequence) and
�
�� � IR�

�
(regressor sequence), the

optimum linear estimator of���� given�� (the Wiener fil-
ter) is the solution of [3]

�� � ��� ��	
��IR�




�
���������

��

�

The optimum estimation error (noise) is

����
�
� �������

� ���

From theorthogonality principleof linear estimation, it re-
sults that
 ������ � � (i.e., they are uncorrelated). There-
fore, it is common in the adaptive filtering literature to as-
sume that

�
����

�
and

�
��
�

are related by a linear model
���� � ��

� �� � ����, with 
 ������ � �.
If, in addition, all variables are Gaussian, it follows from

the orthogonality principle that���� and�� are truly inde-
pendent. Given this property of Gaussian variables, many
works also assume that���� and�� are independent (e.g.,
[2, 5]). Although this last assumption may be true in some
settings, it does not hold in general. In fact, as we shall
show in an example further on,���� and�� aredependent
if there is a nonlinear relation between���� and��.

When the statistics of���� and�� are known, one may
compute�� from [3]

�� � �����

where

�
�
� 
���

�
� � �

�
� 
 �������

In practice, the covariance matrix� and the correlation vec-
tor� are unknown, and one uses an iterative algorithm such
as the least mean squares (LMS) algorithm, normalized-
LMS (NLMS), or recursive least squares algorithm (RLS)
to find approximations to��. It is well-known that all these
algorithms compute unbiased estimates for�� if ���� is in-
dependent of�� (even if

�
��
�

is a correlated sequence) [5].
More is known about LMS: it may be biased when

�
��
�

is
a correlated sequence and���� is uncorrelated, but depen-
dent on�� [7]. This bias, however, decreases to zero as the
step-sizeparameter� of LMS decreases to zero. Therefore,
for slow adaptation (small�), LMS is approximately unbi-
ased. One of the goals of this paper is to show that, unlike
LMS, NLMS may have a nonzero bias even for� � � and
iid

�
��
�

, if ���� is dependent on��. We shall give a sim-
ple example of this fact below, and later proceed to find an
expression for the bias and for the steady-state mean-square



error (MSE) and mean-square deviation (MSD) of NLMS
with correlated input sequences.

The normalized LMS algorithm (NLMS) computes es-
timates of the parameter vector�� using the recursion [5]

���� � �� �
�

�� �����
	������ (1)

where

	���
�
� �������

� ���

and� is a (usually small) positive constant. For comparison,
the LMS algorithm uses the recursion

�lms
��� � �lms

� � �	������

where we used the superscript “lms” to differentiate the
weight estimates computed by NLMS and by LMS.

To see that the NLMS recursion may compute biased
estimates, consider the following simple example: Assume
that
 �  (i.e., all variables are scalar), that the regres-
sor sequence is composed of Gaussian variables with vari-
ance� � 
��� � , and that���� is obtained by���� �
���

�
��
�
, where������ is a saturation function.1

Define the weight error vector���
�
� �����, subtract

�� from both sides of (1) and take expectations on both
sides to obtain (recall that

�
��
�

is iid)


 ����� �

�
� �
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(2)

We computed these expectations using Matlab’s sym-

bolic toolbox, obtaining (for� � ���), 

�

�
�

�

����
�

�
�

�����, and

�

��

����
�

����
�
� ���, concluding that, in

steady-state, the average weight error will be������ 
 ��� �

�
�
�����

���
��� � �����, which is independent of

the step-size�. In Fig. 1 we plot the average���, computed
from� � ��� simulations with� � ���.

LMS, on the other hand, is unbiased:������ 
 ��lms
� �

��� 
������ � �.
Another situation in which the estimation error is not

independent of the regressor is the following: Assume that
1The function ������ used in our simulations saturates at -2.8 for

� � ����, and at +3 for� � �	. For ���� � � � 	, ������ is
a polynomial such that�����	� 
 ����, ����	� 
 	, and������ 


���
�

��	� 
 ���
�

�	� 
 � (the superscript “
�

” stands for derivative). Our
saturation function may be thought of as an approximation for the output of
an amplifier whose positive and negative power supply voltages are not ex-
actly equal. Note that, with the above values,�

�
������

�
� ���� ����

if � � ���� �� (i.e., Gaussian with zero mean and unit variance). This
mean value was subtracted from the samples prior to the application of the
adaptive algorithms.
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Figure 1:
 ��� for the saturation example with� � ���.
Average of 500simulations.

���� can be described by an MA model

���� �

���	
���

���� � �� � �����

where� may be infinity, and the sequences
�
���� � IR�

�
and

�
���� � IR

�
are random and mutually independent.

Then, if we form��
� � � ���	 �����	 ��� �������	 �, when


 � � the estimation error will not, in general, be inde-
pendent of��.

1.2. Equivalence of LMS and NLMS for independent
noise

There are recent results studying the behavior of NLMS
when the sequence

�
��
�

is correlated, allowing in fact for
very general correlation models (e.g., [2, 5]). However,
these results assume that�� is independentof ����, an as-
sumption that is often not satisfied in practice if there are
nonlinearities or unmodelled dynamics involved in the rela-
tion between���� and��, as our examples show.

We now argue that under the above assumption the nor-
malized LMS algorithm is equivalent to the LMS algorithm
applied to the bounded (“normalized”) sequence

�
��	
�

�
�

��

�� �����

�

and with the equivalent desired sequence, noise, and esti-
mation errors

���	���
�
�

����
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�
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If ���� and�� are independent, it follows that


 ���	����
��	
� � ��



i.e., the normalized noise and regressor are uncorrelated.
From the NLMS recursion,���	��� � ��

� �
��	
� � ���	���,

and since
 ���	����
��	
� � �, the orthogonality principle

implies that��
� �

��	
� is also the optimum linear estimator of

���	��� given���	� .
In addition, if we rewrite the NLMS recursion (1) us-

ing the normalized variables, we obtain���� � �� �

��
��	
� 	��	���, which is the LMS recursion applied to the

normalized variables. This means that the theory developed
to the study of the LMS algorithm with bounded regressor
sequences and correlated noise can be used, without any
modification, for the NLMS algorithm. This change of vari-
ables was used before to study the NLMS algorithm [10, 1,
2, 5], always assuming independence of noise and regressor.
Therefore, the cited works only consider the NLMS algo-
rithm when it is behaves in essentially the same as LMS. In
this paper, we study the behavior of NLMS when an exact
comparison with LMS is not possible.

2. NLMS WITH DEPENDENT NOISE

In this section we extend the analysis of NLMS to allow for
dependent noise and regressor sequences. Our analysis is
based on modifications of the averaging method used, for
example, in [7], and described in [9].

2.1. Averaging results

Averaging methods provide a powerful means to analyse the
performance and stability of adaptive algorithms under the
assumption of sufficiently small step-sizes. There are many
expositions on the subject (see, for example, [9, 4]). For
this reason, we only list here to the stability and steady-state
results that are needed in our derivation (see also [6]).

Consider an adaptive update (error equation) of the gen-
eral form

����� � ��� � ������ �����

where ��� is the error vector we want to minimize, and�
��
�

is a stochastic sequence. Now define the averaged
function��	 as

��	��� ��� � 
 ����� ����

where �� is consideredconstantfor the computation of the
expected value. Define theaveragedand thepartially aver-
agedsystems,

���	
��� � ���	

� � ���	 ��� ��
�	
� � �

��
�	
��� � �� � �� 
���	���� ��


�	
� � �

�
���� ��� ��	��� ��

�
�

where� 
���	��� denotes the value of the gradient of��	
(with respect to��) at the origin.

The following result, proven in [9, Ch. 9], shows that if
the step-size� is sufficiently small, the original estimates
��� will remain close to the partially averaged estimates
��
�	
� , and that the steady-state covariance of��� will be

close to that of��
�	
� . The theorem assumes that the

�
��
�

satisfy auniform mixingproperty. Essentially, this condi-
tion says that the dependence of� � and�� dies out as��� ��
increases (see [8]).

Lemma 1 (Averaging result). Consider the error equation
and its averaged and partially-averaged forms as defined
above, where the sequence

�
��
�

is uniform-mixing (see [9,
p. 357]). Assume that (i) the origin,�, is an exponentially-
stable equilibrium point of the averagedsystem with decay
rate����, (ii) the gradient� 
���	��� ��� exists and is con-
tinuous at the origin, and (iii) there exists constants�� and
�� such that, for any vectors� and�, the following Lipschitz
conditions hold:������ ��� ���� ��

�� � ��
���� �

���
�� 
����� ���� 
����� ��� � ��

���� �
���

Under these conditions,��� obtained from the original er-
ror equation satisfies

���
���

���
���
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��� � �� and (3)
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(4)

	

2.2. Averaging analysis of NLMS – Overview

Our goal is to use the above theorem to compute the MSE
(
 	����) and the weight-error covariance matrix (
 ��� ��

�
� )

for small step-sizes�. In order to use Theorem 1, we must:

1. Show that the theorem’s conditions are satisfied for
the problem of interest;

2. Compute the mean and mean-square behavior of��
�	
�

(thus obtaining, via Theorem 1, the behavior of
 ���

and
 ��� ��
�
� for small�);

3. The theorem does not compare��
� ��� and��� ��
�	

� ,
thus we must prove that



�
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�
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 � and
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4. Study the mean and mean-square behavior of��
� ��
�	

�

(finding
 	��� and
 	���� for small�);

A difficulty in task 1 is that the NLMS averaged error
equation (see below) may not have an equilibrium point at
� when���� is dependent of��, contrary to one assump-
tion of Theorem 1. This can be overcome by a change of
variables

��	��
�
� ���	�

� � ���	�
� �

where

���	�
� � ����	����

���	 �
�

�
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�

�� �����

�
� and �

�
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�� ����

�
�

(5)

Using this change of variables, we can show that Thm. 1
can be applied to the NLMS recursion, and prove the theo-
rem below.

Theorem 1. If
�
��� ����

�
is stationary and uniform-mixing,

and if

�

	��	��
�������

�
�� �, the NLMS weight error��� is such

that, for� � �,

Averagevalue:
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���
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�

MSD:
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where� satisfies
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In addition, if������ ���� ��,

MSE:
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where��	 � 
 �����,���	 is given above,� � ���� �����,
������ is the vector obtained by stacking the columns of�
one at a time, and�� is the Kronecker product of matri-
ces� and�.

Proof: Since the proof is quite long, we only provide
a brief outline of it. To obtain the above results, one starts
with the partially-averaged NLMS recursion. Since this is a
linear recursion on��
�	

� , it is possible to write
 ��
�	
� as a

function of the initial condition,��
�	
� (assumed determin-

istic).
To compute the limits as�
 � and� 
� of the MSE

and MSD, we use the fact that the sequence
�
��� ����

�
is

stationary and uniform-mixing, and thus for any functions
���� and����,

���
���
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����� ����� �
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 ����� ����� � 
����� ������

where the first equality follows from the uniform-mixing
condition, and the second from stationarity. With this con-
dition, we are able to find the most important terms (in an
expansion around� � �) of the MSE and MSD. 	

3. VERIFICATION

We now verify the above results by means of a simulation
example, in which the filters have dimension
 � �, the
regression vector is

�� �
�
��� � � ����

�
�

with
�
����

�
the output of a 3rd order digital Chebyshev

filter with cut-off frequency at� � � �, and with 3dB
ripple in the pass-band whose input is an iid Gaussian ran-
dom sequence with variance� and zero mean. The desired
sequence is obtained from

���� � ���������� 
����������

where������ is the saturation function defined before.
With these conditions, we averaged 500 runs of the nor-

malized LMS algorithm with� � ���, and� � ���, ob-
taining the curves in fig. 2. Note that, from Thm. 1, the
steady-state MSE should be���. In our simulations, we
obtained for the steady-state MSE the value���; quite
close to the predicted values.

4. CONCLUSION

In this paper, we provided expressions for the steady-state
MSE and MSD for the NLMS algorithm, in conditions where
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Figure 2:
 	���� for the NLMS algorithm with� � ���.
The plot also shows the computed level for the MSE.

NLMS may compute biased estimates for the Wiener fil-
ter. Our expressions are dependent on knowledge of several
statistics of the regressor and noise sequence, which can be
estimated by performing measurements or simulations. We
gave an example showing the close agreement between sim-
ulations and our expressions.
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