
UMTS Terminal Equipment
For All-IP Based Communication Scenarios

Manuel Ricardo1,2, Rui Soares1,2, Jaime Dias2 and José Ruela1,2
{mricardo, rsoares, jdias, jruela}@inescporto.pt

1. Faculdade de Engenharia da Universidade do Porto. Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

2. INESC Porto. Praça da República 93, 4050-497 Porto, Portugal

Abstract - The paper presents the architecture of an UMTS

terminal equipment for IP based communications, that supports
relevant services and takes advantage of traffic control features
available in LINUX.

I. INTRODUCTION

This paper presents some results of the work carried out in the
European IST ARROWS (Advanced Radio Resource Management
for Wireless Services) project [1]. This project aims at providing
advanced Radio Resource Management (RRM) and Quality of
Service (QoS) management solutions for the support of integrated
services within the context of Universal Terrestrial Radio Access
(UTRA). The project addresses packet access, asymmetrical traffic
and multimedia services, all of them based on IP. Therefore, the
main objectives of ARROWS are: 1) to simulate and validate
advanced RRM algorithms for an efficient use of the radio resources
at UTRA; 2) to provide QoS bearer services for packet switched
flows at the UTRA through the use of QoS management
procedures; 3) to demonstrate the benefits of the developed
algorithms and procedures by means of an IP based multimedia
testbed.

The work presented in this paper is related to the third objective.
This testbed consists of several functional blocks: 1) an all-IP based
UMTS terminal; 2) an UTRAN emulator, implementing the UMTS
radio interface and the relevant RNC functions; 3) a gateway
implementing functions traditionally assigned to SSGN and GGSN;
4) a backbone IP network and its associated routers; 5) a server
where applications have their servers.

In the remaining of the paper the first functional block will be
addressed – the all-IP UMTS terminal, which supports multimedia
applications and is implemented in a LINUX based PC. Its
architecture, the applications selected, the classification, scheduling
and shaping of IP flows as well as the interface with the UMTS
network interface, assumed to implement the UMTS Non-Access
Stratum (NAS) functions, are described.

The paper is organized in 6 parts. Section II introduces the
multimedia applications selected for ARROWS and, thus, for
terminal equipment. Section III presents the UMTS terminal
architecture, which is biased towards the compatibility between the
IP and UMTS worlds from flow and QoS points of view. Section IV
reviews the IP QoS facilities nowadays available in Linux and
presents a strategy for using them in an all-IP UMTS terminal.
Section V describes the strategy adopted for controlling the traffic.
Finally, Section VI presents the main conclusions.

II. MULTIMEDIA APPLICATIONS

In UMTS four traffic classes have been identified: conversational,
streaming, interactive and background. The main distinguishing
factor between these classes is how delay sensitive the traffic is: the
conversational class is meant for very delay-sensitive traffic, while
the background class is the least delay-sensitive. Furthermore,
between the conversational and streaming classes, an additional
comment can be made - the conversational class has more stringent
jitter requisites. This is mostly due to the fact that conversational
traffic is symmetric, while streaming is highly asymmetrical. This
allows the use of buffers in streaming to smooth out jitter. In
conversational services, this would increase too much the delay for
human perception, turning the communication awkward.

In the ARROWS project, one application representative of each
UMTS traffic class was selected: Videoconference (conversational),
Video streaming (streaming), Web browsing (interactive) and Email
(background). Besides, applications were required to satisfy three
characteristics: 1) be widely used; 2) be open source, so that
extensions to RSVP and IPv6, for instance, could be easy; 3) have
port for LINUX.
A. Videoconference

VIC and RAT, the well-known video and audio conferencing
tools, were selected as departing applications. Although designed for
multicast environments, they will be configured in ARROWS as
point-to-point (unicast). Both applications rely on the Real Time
Transport Protocol (RTP).

RTP is the IETF protocol for the transport of real-time data,
including audio and video. It can be used for media-on-demand as
well as interactive services such as Internet telephony. RTP consists
of a data and a control part. The latter is called RTCP. The data part
of RTP is a thin protocol providing support for applications with
real-time properties such as continuous media (e.g., audio and
video), including timing reconstruction, loss detection, security and
content identification. RTCP provides support for real-time
conferencing of groups of any size within an internet. It offers
quality of service feedback from receivers to the multicast group as
well as support for the synchronization of different media streams.
Both protocols use the services provided by the UDP protocol that,
in turn, uses IP.

VIC supports the H.261 and H.263 video codecs. H.261 is a
video coding standard designed for data rates which are multiple of
64 kbit/s and is sometimes called px64 kbit/s (p in 1 to 30). H.263
was designed for low bitrate communication (less than 64 kbit/s).
RAT also supports several codecs, among which the G.711 PCM

(64 kbit/s), the G.726 ADPCM (16-40 kbit/s), the LPC (5.6 kbit/s)
and the GSM (13.2 kbit/s).

When used for an audio-video telephony call, these applications
generate two real-time and bi-directional IP flows (audio and video)
that have to be adequately transported through the UMTS transport
services (RAB – Radio Access Bearers / PDP Contexts).

B. Video streaming
Video streaming (including audio, as well) was required to be

based on a coding scheme using two streams that contain base and
enhancement information, respectively. The intention was to
adopt MPEG-4 FGS (Fine-Granularity Scalability) profile.
This codec, however, is under development and some parts
(the scalable parts) are not yet stable. To overcome this
limitation, an H.263+ video codec will be used instead. It can
generate two constant bit rate flows – a 32 kbit/s base flow
and an enhancement flow that can vary from 0 to 96 kbit/s in
steps of 16 kbit/s.

 The application that will be used is the one developed by the
MPEG4IP group, which also deploys video over the RTP/UDP/IP
protocol stack. When playing a film, two unidirectional and real
time IP flows have to be transported over the UMTS network.
C. Web Browsing and Email

Web browsing at the terminal requires a browser, that is, an
HTTP client. Email, at the mobile terminal, requires both POP3 and
IMAP clients. The three application protocols (HTTP, POP3 and
IMAP) use the TCP/IP stack. No real time requirements are
envisaged for the IP flows they generate.

Mozilla is being used as departing point for these applications.
III. TERMINAL ARCHITECTURE

The UMTS terminal architecture for supporting the IP based
services presented above is shown in Fig. 1.

Figure 1 – UMTS Terminal Architecture
A. Functional blocks

Forward includes the IP look up routing tables and the
encapsulation of transport level segments in IP datagrams.

Classifier filters the packets and places them in different queues
according to their characteristics. Datagram fields, such as
destination port, TOS (IPv4) or Flow Label (IPv6), can be used as
criteria to classify the packets.

Shaper, simply said, consists of a queue for an IP flow. A queue
has properties associated with it, such as its bandwidth. It can shape
a flow so that it does not violate the QoS previously negotiated for
the RAB (in the NAS module) sustaining it.

Mapper is the block responsible for negotiating the activation,
modification and deactivation of PDP contexts associated with the
RABs [4], passing the NAS the desired QoS parameters. Also, the
mapping between RSVP QoS parameters and PDP context QoS
parameters is performed here. Finally, this block implements the
admission control required for RSVP.

RSVP implements the RSVP protocol that, in the ARROWS
project, is used to guarantee end-to-end QoS to IP flows transport
through both the UMTS and the IP backbone. It can, in some
circumstances, be avoided.

NAS module implements the Non Access Stratum functions such
as session management and mobility management. It consists of two
planes. On the user plane, the module is offered as a standard
LINUX network interface (umt0, in Fig. 1) and is able to exchange
datagrams with the IP layer. On the control plane, the NAS module
is offered as a character device driver (/dev/nas0, in Fig. 1), through
which messages for establishing and terminating RABs are
exchanged.

B. PDP context
A GPRS subscription consists of one (or more) PDP address that,

in the case of Fig. 1, will be the IP address associated to the interface
umt0. Each PDP address, in GPRS, is described by one or more
PDP contexts. Each PDP context is associated to a RAB. When
more than one PDP context exists, the other PDP contexts must
have a TFT (Traffic Flow Template) associated. A TFT consists of
up to eight packet filters. Each filter contains a valid combination of
the following attributes: Source Address and Subnet Mask, Protocol
Number (IPv4) / NextHeader (IPv6), Destination Port Range,
Source Port Range, IPSec Security Parameter Index (SPI), Type of
Service (TOS) (IPv4) / Traffic Class (IPv6) and Mask, Flow Label
(IPv6). PDP context and RAB, due tot heir one to one relationship,
are used interchangeably in the paper.

The mobile station should be able to support more than one PDP
context simultaneously and to forward the IP packets into the
appropriate RAB. This justifies the use of the Classifier and the
Shaper in Fig. 1. With this, more than one PDP context may exist,
each with different QoS parameters and to which packets will be
forwarded depending on the class of the traffic they belong. In
videoconference, for instance, image and voice are carried as two IP
flows. These flows have different QoS requirements and thus may
be mapped to separate PDP contexts.

C. RSVP
Applications will interface with RSVP to request the reservation

of resources along the path of the data stream, at the IP layer. This
block will also interface with the Mapper so that the establishment
and release of a PDP context may be done. In the case of activation,
it should map the RSVP QoS parameters into appropriate PDP
context QoS parameters and ask the NAS for the establishment of a
PDP context with the given parameters. It should be noted that this
block works also as admission control for the RSVP.

NAS Module

Mapper

Classifier

Forward

Scheduler

IP

TCP/UDP

Applications

RSVP

umt0 /dev/nas0

Shaper

RSVP messages are themselves carried over IP datagrams. A
RAB for best effort traffic can be used to transport these messages.
This RAB can be used as well to transport the IP flows for the Web
browsing and Email applications.

IV. IP TRAFFIC CONTROL IN LINUX
Recent LINUX kernels have been growing to include a

number of advanced networking features such as firewalls,
QoS and tunneling. The QoS support, available since kernel
2.1.90, provides a number of features. The working principle
adopted in recent kernels (e.g. 2.4.4) is shown in Fig. 2.

Figure 2 – LINUX traffic control

The Input De-multiplexing block examines an incoming packet
and determines if it is destined to the local node. If so, it is sent to
higher layers (TCP/UDP block) for processing. Otherwise, it is
passed to the Forwarding block. This block looks up the routing
table and determines the next hop for the packet. After this, the
packet is placed in a queue maintained for the device (e.g. eth0 or
umt0). It is on this Output Queue that traffic control is performed,
just before the packet is sent to the network interface. The traffic
control in LINUX consists of three building blocks: Queuing
Discipline, Class and Filter.

A Queuing Discipline is a framework used to describe a policy
for scheduling output packets. It is usually associated to a network
interface such as eth0 or, in the case of Fig. 1, umt0. LINUX
provides several disciplines for scheduling packets such as FIFO
(First In First Out), TBF (Token Bucket Flow), CBQ (Class Based
Queuing), RED (Random Early Detection) and TEQL (True Link
Equalizer). A Queuing Discipline, however, may be structurally
complex. In this case, a set of Classes and Filters may be associated
to a root Queuing Discipline where Filters are used to assign packets
to Classes.

In this case, a Class, must have a new Queuing Discipline
associated that, in turn, may have more Classes and Filters. This
principle enables the combination of Queuing Disciplines, Classes
and Filters in an arbitrary hierarchical structure. Each network
interface may own one of these complex structures.

Filters are then installed on Queuing Disciplines to direct packets
to Classes on that Queuing Discipline. The following filters may be
used in LINUX: u32, rsvp, fw, route and tcindex. The u32 generic
filter enables the classification of packets based on any of their
header fields, such as IPv4, IPv6, TCP, UDP or ICMP. The rsvp
filter allows the classification of packets based on the parameters

that define an rsvp flow such as the IP destination address and either
the port or the flow label.

The traffic control may be configured in user space using the tc
command available in the iproute2 package. A good description of
this command as well as on scheduling, queuing disciplines, filters
and traffic control in general may be found in [2] and [3].

Some relevant header files associated to traffic control are the
include/net/pkt_sched.h and the include/linux/skbuff.h. The last
includes, among others, the definition of an important structure – the
sk_buff. Every IP datagram in the kernel has associated one instance
of this structure that contains information such as: the socket the
packet belongs to (struct sock *sk), the device the packet has arrived
on or is leaving from (struct net_device *dev), the transport header
(union h), the network header (union nh), the link layer header
(union mac), the packet queuing priority (__u32 priority), the traffic
control index (__u32 tc_index) and the data itself (uchar *data).
One important function implementing traffic control, the int
(*enqueue)(struct sk_buff *, struct Qdisc *), is responsible for
queuing the packet pointed to by the first parameter, with the
queuing discipline pointed to by the second. When the function is
executed, the filters are run one by one until a match occurs (in the
case where filters apply). This determines the class the packet
belongs to. After that, the enqueue function of the queuing discipline
associated with that class is called and so on. The enqueue function
for the Token Bucket Flow queuing discipline, for instance, is
tbf_enqueue and is defined in net/sched/sch_tbf.c.

V. TRAFFIC CONTROL ON THE UMTS TERMINAL

After a PDP context has been negotiated and the associated RAB
established, the terminal may start communicating. However, the
terminal may have more than one PDP context activated and more
than one RAB established, each with its own QoS parameters. It is,
therefore, necessary to direct the packets to the proper RAB,
schedule the packets according to their priorities and shape the
traffic so that the flow sent to a RAB is compliant with the QoS
previously negotiated for that RAB.
A. Scheduling

Scheduling is usually required when there is the need to share a
link with limited bandwidth. Also, flows with higher priorities must
be scheduled first, taking care that flows with lower priorities do not
starve. Thus, the concepts of sharing and priority hold when talking
about scheduling. A flow with high priority may require less
bandwidth than another flow with lower priority. Sharing is about
bandwidth, priority about delay and jitter.

The services introduced in Sec. II can, from the priority
point of view, be ordered as Email, Web Browsing, Video
streaming and Videoconference, where the last has the
highest priority. The same, however, may not be said about
bandwidth. A Video streaming session may require a larger
bandwidth than a pure voice session.

The CBQ (Class Based Queuing) discipline can be used to
solve the priority issue. This discipline is based on a
statistical scheduling and on a hierarchical tree of traffic
classes. When a packet is received, it is classified and
associated to a leaf class. It is possible to associate bandwidth
and a priority to each class. The CBQ queuing discipline is
delivered with two schedulers: generic and link sharing. The
generic scheduler aims at guaranteeing a low delay to real
time flows. The link sharing scheduler tries to avoid that real
time flows monopolize the use of the link.

traffic controlOutput
Queue

Forwarding TCP/UDP

Input De-multiplexing

packet in

packet out

B. Shaping
The bit rate of a flow can be regulated using shaping

techniques. In this case, the traffic passed to a RAB needs to
be in conformity with the bandwidth previously negotiated
for that RAB. The use of a CBQ class for this purpose is not
adequate, since none of its schedulers addresses this problem.
Better results, in terms of the difference between the
configured parameters and offered results, can be achieved if
a TBF (Token Bucket Flow) queuing discipline is associated
to each leaf class.

The TBF consists of a buffer (bucket), filled by virtual pieces of
information (tokens) at a specific constant rate (token rate). An
important parameter of the bucket is its size, that is, the number of
tokens it can store. Each token in the bucket lets one incoming data
octet to be sent out of the queue and is then deleted from the bucket.

Associating this algorithm with the two flows -- token and data,
gives three possible scenarios: 1) the data arrives into TBF at a rate
equal to the rate of incoming tokens. In this case each incoming
packet has its matching tokens and passes the queue without delay;
2) the data arrives into TBF at a rate lower than the token rate. In this
case, only some tokens are deleted when data packets are sent out
and therefore tokens accumulate up to the bucket size. These tokens
can then be used to send data above the token rate, if short data burst
occurs; 3) the data arrives into TBF at a rate higher than the token
rate. In this case, a flow overrun occurs - incoming data can be only
sent out without loss until all accumulated tokens are used. After
that, data packets are dropped. This scenario enables data to be
shaped administratively. The accumulation of tokens allows short
burst of data to be passed without loss, but any lasting overload will
cause packets to be constantly dropped. The average data rate is
bounded by the token rate.

C. Proposed configuration
A generic traffic control configuration proposed for an IP based

UMTS is shown in Fig. 3. Scheduling and shaping of the flows are
implemented with CBQ and TBF queuing disciplines, respectively.
It is also shown the location of the filters. For each RAB, one leaf
class on the CBQ queuing discipline (e.g. 1:11) is created. Also,
each class has one TBF queuing discipline associated instead of the
generic one installed by default.

For generality and to prove the flexibility of the solution, four leaf
classes were drawn. In order to support the services presented in
Sec. II, a finer assignment is required. Videoconference requires two
classes, corresponding to two RABs and serving two flows - one for
audio and another for video. Video streaming also requires two
classes – for the base and the enhancement flows. The other flows,
corresponding to Web Browsing, Email and generic signaling, such
as RSVP, may be assigned to a fifth class which, in turn, can be
mapped to the primary PDP context. No values are presented for
configuring the buckets (token rate and bucket size) since they will
depend mainly on the cost of the radio channels. However, the
proposed solution is flexible enough to fully support dynamic
configuration of these values.

There is one problem associated to this solution - once the packet
is sent to the network interface (NAS module, umt0) how can it
know to which RAB the packet belongs to?

The solution proposed is to use the flow label (IPv6 case) or the
TOS (IPv4) fields to distinguish the RABs. The TFT (Traffic Flow
Template, associated to a RAB) can be given a list of TOS or Flow
Label values that belong to each RAB. In this case a given TOS or
Flow Label would always belong to the same RAB.

Figure 3 – UMTS terminal traffic control
However, a RAB may have more than one TOS or Flow Label

associated with it (up to eight in conformity with 3GPP standards).
This requires that applications mark the flow label or TOS field.
This can be done in two ways.

For the case of TOS, the following function can be used by
applications

setsockopt(send_sock, SOL_IP, IP_TOS, &tos, sizeof(tos))
where send_sock is the socket descriptor and tos is a variable with

the TOS value. This call can be done after opening the socket. From
this point on, all packets belonging to this socket have the TOS field
marked with the desired value.

For the Flow Label case, the solution is more complex. First, the
kernel must be requested to lease the flow label and then the flow
label with the value leased must be set. The following (simplified)
function performs that:
int get_flow_label(int fd, struct sockaddr_in6 *dst, __u32 fl)
{
int on = 1; struct in6_flowlabel_req freq;
freq.flr_label = htonl(fl); freq.flr_action = IPV6_FL_A_GET;
freq.flr_flags = IPV6_FL_F_CREATE | IPV6_FL_F_EXCL;
freq.flr_share = IPV6_FL_S_EXCL;
memcpy(&freq.flr_dst, &dst->sin6_addr, 16);
setsockopt(fd, SOL_IPV6, IPV6_FLOWLABEL_MGR, &freq,sizeof(freq));
dst->sin6_flowinfo |= freq.flr_label;
setsockopt(fd, SOL_IPV6, IPV6_FLOWINFO_SEND, &on, sizeof(on));
return 0;
}

This function must be called prior to calling the socket connect
function. In fact, a socket connect MUST be called even for UDP
flows, otherwise the flow label will not be marked. The parameters

RSVP
filters

CBQ Class 1:1

scheduling

root CBQ QDisc

CBQ
Class
1:11

CBQ
Class
1:12

CBQ
Class
1:13

CBQ
Class
1:14

TBF
QDis
11:

TBF
QDis
12:

TBF
QDis
13:

TBF
QDis
14:

shaping

passed are the socket descriptor, the struct sockaddr_in6 used on the
connect call and the desired flow label. Also, after leased by the
kernel, the flow label cannot be used in any other socket. This is
given by line freq.flr_share = IPV6_FL_S_EXCL; other flags may
be used to set the flow label share options.

Marking the TOS or Flow Label at application level implies that
applications must be changed. An alternative approach is to mark
the packet when it is enqueued, on the queuing discipline. In this
case, each RAB would have a TOS or Flow Label associated with it.

This solution requires patching the kernel, adding the following
line on the tbf_enqueue function on net/sched/sch_tbf.c:
tbf_enqueue(struct sk_buff *skb, struct Qdisc* sch) {
 struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data;
 skb->nh.iph->tos = 0xAA;
 …

This marks the packet TOS with the value 0xAA. Obviously, the
value would have to be configured for each queuing discipline. This
could require a user level tool to tell the kernel which value to use.
D. Configuration Example

The traffic control may be configured either using netlink sockets,
if it is an application configuring it, or with the use of tc command
from iproute2 package. An example of a script used to configure a
hierarchy similar to Fig. 3, but for device eth1, is shown below.

Only two classes are configured, with token rates of 64 kbit/s and
32 kbit/s, respectively. The classes have the same priority and are
configured for very small IP datagrams – 72 octets, on average. This
parameter is required to calculate the variables of the CBQ
algorithm. The bucket size is 1500 octets. Finally, two u32 filters are
installed in the root CBQ queuing discipline. Classification is based
on the TOS value – packets with TOS values of 0x20 and 0x00 are
classified into the 64 kbit/s and the 32 kbit/s classes, respectively.
#!/bin/sh
case "$1" in
 start)
tc qdisc add dev eth1 root handle 1: cbq bandwidth 10Mbit allot 9200 cell 16
avpkt 72 mpu 64
tc class add dev eth1 parent 1: classid 1:1 cbq bandwidth 10Mbit rate 10Mbit
avpkt 72 prio 2 allot 9200 bounded
tc class add dev eth1 parent 1:1 classid 1:11 cbq bandwidth 10Mbit rate
64kbit avpkt 72 prio 2 allot 9200
tc class add dev eth1 parent 1:1 classid 1:12 cbq bandwidth 10Mbit rate
32kbit avpkt 72 prio 2 allot 9200
tc qdisc add dev eth1 parent 1:11 handle 11: tbf limit 20K rate 64kbit burst
1500 mtu 1500
tc qdisc add dev eth1 parent 1:12 handle 12: tbf limit 10k rate 32kbit burst
1500 mtu 1500
tc filter add dev eth1 parent 1: protocol ip prio 5 handle 1: u32 divisor 1
tc filter add dev eth1 parent 1: prio 5 u32 match ip tos 0x00 0xff flowid 1:12
tc filter add dev eth1 parent 1: prio 5 u32 match ip tos 0x20 0xff flowid 1:11
..
 stop)
tc filter del dev eth1 parent 1: prio 5
tc class del dev eth1 classid 1:12
tc class del dev eth1 classid 1:11
tc class del dev eth1 classid 1:1
tc qdisc del dev eth1 root
;;

VI. CONCLUSIONS
This paper reports some results of the work carried out within the

European R&D project ARROWS and addresses the architecture of
an UMTS terminal that supports IP based services and is
implemented on a LINUX PC. The terminal is required to support 4

services (Videoconference, Video streaming, Web Browsing and
Email) that are representative of relevant UMTS traffic classes.
Videoconference and Video streaming use the RTP/UDP/IP
protocol stack and each service generate two real time flows with
QoS requirements. The other services are less QoS demanding and
use the traditional TCP/IP stack. The UMTS protocol stack,
implementing the well-known Non-Access Stratum, is expected to
be available as a module offered with two interfaces: the umt0
network interface, for IP packets – user plane, and a character device
driver used to establish an terminate RABs - control plane.

The mapping of IP/RSVP flows into UMTS PDP contexts and
the control plane in general [4] are not considered and the paper
mainly addresses the problem of classifying and shaping the packets
passing from the IP layer to the UMTS interface so that (1) packets
are delivered in time and the application QoS requirements are
satisfied but, on the other hand, (2) these flows do not violate the
QoS contracts previously established between IP and NAS UMTS.

The solution proposed for this problem is to rely on the LINUX
IP traffic control capabilities for classifying and shaping the flows –
a CBQ queuing discipline is defined as a tree of classes, one for each
RAB/PDP Context. Each leaf class is configured as a TBF queuing
discipline that shapes the flow.

The paper also reasons about the proposed solution by identifying
the necessity of marking the IP packets so that they can be selected
by rsvp filters (that assign packets to the classes) but can also be
parsed by the UMTS network interface (that uses this information to
assign packets to RABs). The main advantage of the solution [5] is
to rely on well-known and widely available scheduling and shaping
functions at the IP level.

The paper gives examples for configuring the traffic control and
for marking packets in LINUX, as well.

ACKNOWLEDGEMENTS

The authors wish to thank the support given by the IST
European research programme and their partners within the
ARROWS consortium: Universitat Politecnica de Catalunya,
University of Limerick, Telefónica I+D and Telecom Italia
Lab.

REFERENCES
[1] IST ARROWS project, http://www.arrows-ist.upc.es

[2] iproute2+tc notes, http://defiant.coinet.com/iproute2/,
 http://snafu.freedom.org/linux2.2/iproute-notes.html

[3] Rui Prior, “Quality of Service in Packet Switched Networks” (in
Portuguese), MSc Thesis, Univ. Porto, 2001.
http://telecom.inescn.pt/doc/msc.html

[4] R. Soares, M. Ricardo, “Description of the Interface
between the IP and UMTS communication layers
(signalling and user planes), at the User Terminal and
Gateway equipment”, ARROWS document, 2001.

[5] R. Soares, M. Ricardo, “Traffic Control in the UMTS
Terminal based on IP CBQ and TBF queuing disciplines:
description of available implementations for Linux,
proposal of a traffic control architecture mappable to
UMTS PDP contexts and flow shaping evaluation”,
ARROWS document, 2001.

