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Abstract— We study how �nd order statistics (SOS) can be exploited
in two signal processing problems, blind separation of binary sources
and trained-based multi-user channel identification, in a Bayesian context
where a prior on the mixing channel matrix is available. It is well known
that the SOS of the received data permit to resolve the unknown mixing
matrix, up to an orthogonal factor. In a Bayesian framework, this residual
orthogonal mixing matrix becomes a random object in its own right, with an
associated distribution over the group of orthogonal matrices. This distri-
bution is induced by the prior on the mixing matrix, and must be known for
optimum statistical processing. We rely on a previous theoretical work to
provide these answers, and discuss applications for this induced probabil-
ity density function (pdf) over the orthogonal group, in the two aforemen-
tioned signal processing problems. Preliminary results, obtained through
computer simulations, demonstrate the effectiveness of incorporating this
induced distribution associated with the residual orthogonal matrix into
the design of several estimators.

I. I NTRODUCTION

�
LIND source separation (BSS) has been an active area of
research over the past few years [1]. It finds direct appli-

cation in the exploding field of wireless multi-user communica-
tions with spatial diversity, e.g., Space Division Multiple Access
(SDMA) networks. In these wireless systems, unknown space-
time channels mix the co-channel user signals prior to base sta-
tion reception. Blind signal separation techniques are needed at
the receiver to reconstruct the source signals from the antenna
array observations [2], [3], [4], [5], [6].

A common first step in BSS techniques consists in exploit-
ing the �nd order statistics (SOS) of the observations to par-
tially resolve the unknown mixing matrix [1], [7], [8], [9], [10],
[11]. Usually, the SOS of the received data are used to turn
the unknown mixing matrix into an unknown rotation mixing
matrix. This simplifies the remaining processing as the alge-
braic constraints of the orthogonal group can be efficiently ex-
ploited for algorithmic purposes. Notice that the original (non-
whitened) mixing matrix often lacks any interesting structure.
The residual unknown rotation matrix can be solved under sev-
eral identification strategies depending on the source character-
istics, number of available data samples, etc. Some options in-
clude: iterative joint diagonalization of several cumulant ma-
trices for non-Gaussian signals [7], iterative joint diagonaliza-
tion of several covariance matrices for instantaneously mixed
stationary sources with sufficiently diverse but unknown�nd or-
der spectra [8], closed-form isometry fitting for convolutively
mixed stationary sources with sufficiently diverse and known
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�nd order spectra [6], analytical signal separation for constant-
modulus sources [2], iterative demodulation of finite-alphabet
sources [3], globally convergent iterative separation of indepen-
dent and identically distributed sources by kurtosis-based crite-
ria [11].

In many scenarios, the mixing matrix can be modeled as a ran-
dom object with given prior probability density function (pdf).
In [12], we studied how a given pdf on the set of non-whitened
mixing matrices contracts to a pdf on the lower-dimensional or-
thogonal group containing the whitened mixing matrices. The
contribution of this paper consists in providing signal process-
ing applications for the theoretical framework developed in [12].
We show how the derived priors over the orthogonal group can
be exploited for improving performance in two problems: blind
separation of co-channel binary sources and trained-based chan-
nel identification in multi-antenna systems. Further applications
can be found in [13].

Our paper is organized as follows. In section II, we introduce
our data model and briefly review the work in [12]. We assume
that the non-whitened random mixing matrix has a zero-mean
matrix variate normal distribution with given dispersion matrix.
A particular case of this prior is commonplace in works with
multiple-antenna systems where it is known as the independent
Rayleigh fading assumption [14]. We handle a more general
model allowing correlation between the entries of the mixing
matrix. We present the results of [12] in which we examined
how this prior on the non-whitened matrices contracts to a pdf
over the group of orthogonal matrices, under the action of two
distinct prewhitening methods. The two prewhitening methods
considered are based on the polar and the�� decomposition of
the non-whitened mixing matrix, respectively. In section III, we
address the problem of blind source separation when the mixing
matrix is drawn from a known zero-mean Gaussian prior. We
apply the results in [12] to find educated guesses for initializing
a locally convergent source separation algorithm. In section IV,
we address the problem of channel identification in the context
of multi-antenna systems. We show how the pdfs derived in [12]
can be exploited to improve the accuracy of trained-based chan-
nel estimators. Section V contains the main conclusions of our
work.

Throughout the paper, we use the following notation. The set
of ���matrices with real entries is denoted by���� . Matrices
are written in uppercase. The symbols���� , ������, � and��
denote the transpose operator, the determinant, the Kronecker
product and the��� identity matrix, respectively. The notation
� � �����, ���� �

�
� � ��� � ��

�
and����, stand for the

groups of� � � non-singular, orthogonal and lower triangular
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matrices with positive diagonal entries, respectively. The cone
of positive definite matrices of size��� is represented by����.
Additional notation is introduced as needed.

II. DATA MODEL AND PREVIOUS WORK

We adopt the standard discrete-time instantaneous linear mix-
ture data model, e.g., see [1], [8],

�	�
 � �		�
 � 
	�
� (1)

where �	�
 � ���	�
� � � � � �� 	�
�
� represents the� -

dimensional vector of observations,� � ���� stands for
the mixing matrix,		�
 � �	�	�
� � � � � 	� 	�
�� contains the�
source signals, and
	�
 � �
�	�
� � � � � 
� 	�
�

� models ob-
servation noise. Here, for simplicity, all data objects take val-
ues in the field of real numbers. As usual, the sources are as-
sumed to be zero-mean,�nd order stationary and uncorrelated,
� � �

�
		�
		�
�

�
� �� , and the mixing matrix is non-

singular,� � � � �����. We assume that the process
	�

is zero-mean and wide-sense stationary with known correlation
matrix�	
 � �

�

	�

	�
�

�
. It is well known that the�nd

order statistics of the observations can be exploited to partially
solve for the unknown mixing matrix�. Here, we consider two
alternative methods based on the polar and the�� decomposi-
tion of �, respectively. Both methods act on the so-called de-
noised correlation matrix of�	�
,

 � �	
��	
 � ��� � (2)

where�	
 � �
�
�	�
�	�
�

�
. In practice,�	
 can be re-

placed by its sample-mean estimator

��	
 � �

�

��
���

�	�
�	�
� � (3)

where� denotes the number of available data samples.i) Fo-
cusing first on the polar decomposition, write� � �� where
� � ���� and� � ����. This factorization exists and it is
unique for any� � � � ����� [16]. Substituting in (2) yields
 � � �. Thus,� can be obtained from the available as its
square-root,� � ���. Thus, the SOS of the data permit the
receiver to recover the factor� of the mixing matrix� � ��.
The factor� is not resolved.ii) Using the�� decomposition,
we can write also uniquely� � �� , where� � ���� and
� � ����. Thus, � ��� , meaning that� may be obtained
from as its unique Cholesky factor. Again, the mixing matrix
� � �� is partially resolved. The factor� is revealed by the
correlation matrix of the observations, but� remains unknown.

After either the PQ or LU pre-processing step is performed,
our original data model (1) switches to

�	�
 � ��		�
 � 
	�
 (4)

or
�	�
 � ��		�
 � 
	�
� (5)

with � or � known, respectively. If the original mixing ma-
trix has a prior,� � ����, then the unknown residual orthog-
onal matrices� and� in (4) and (5), respectively, denote ran-
dom objects. In [12], we investigated the distributions of� or

� for a given prior on�. The results derived in [12] are ex-
pressed in the setting of Riemannian geometry [17], [18]. This
viewpoint is natural and almost mandatory since we are dealing
with distributions over lower-dimensional submanifolds of Eu-
clidean spaces, e.g., the orthogonal group����, the cone of
positive definite matrices����, etc. In the sequel, we assume
the reader to be acquainted with such differential-geometriccon-
cepts. We try to use notation compatible with [17]. We re-
gard����, ���� and���� as differentiable manifolds taking
their Riemannian structure from the corresponding embedding,
e.g.,� � ���� � � � �����, ���� � � . Here,� � �����

is identified with an open subset of the Euclidean space��
�

by interpreting a� � � matrix as a� �-dimensional vec-
tor. All these manifolds are orientable and we let�����	��,
�����, ����� and����� denote the corresponding volume el-
ements (the particular choice of orientation is not important to
us) derived from their Riemannian metrics. Moreover, when
taking the Cartesian product of manifolds, we implicitly as-
sume the canonical construction for the product metric, hence,
for the volume element of the product manifold. In this Rie-
mannian context, a mass distribution or pdf over any of these
manifolds is a non-negatively oriented exterior form. As an ex-
ample, a mass distribution�, say, over the orthogonal group,
belongs to the bundle of alternating tensors

�

������, where

� � ������� � ��� � ����. Since for any given dis-
tribution� over����, we have� � � ����� for an unique
nonnegative smooth function� � ���� � �, we use the ter-
minologymass distribution for either� or � . This also applies
to the other manifolds considered in this paper.

In the sequel, we shall make use of the following results
from [12]. Let���� denote the pdf (prior) on the mixing matrix
� � � � �����. Then, the factorization� � �� induces the
pdf on����� ���� given, up to a normalizing constant, by

������ � �������� �� (6)

where the function� � ����� � satisfies� ��� �� �� � ��� �,
where�� � ���� � ���� denotes conjugation by� � ����,
�� �� � � � �� � . Likewise, the factorization� � �� induces
a pdf on������ ��� given, up to a normalizing constant, by

������ � ���������� (7)

where� � ���� � � is given by���� � ������������.
Here, the function�� � ���� � � is defined, for� � ���� ,
as

����� � ��
�����

�
����

��� ��� � � � ��

��� ��� � � � ��


...
... � � �

...
�
� �
� � � � �



	



� �

In this paper, we restrict ourselves to the scenario where�
has a zero-mean matrix variate normal distribution with covari-
ance matrix�� � �, denoted� � � �� �� ���, where

� � ����, see [15]. This means that�
�
� ����� (equality in

distribution), where� denotes an��� random matrix whose
entries are independent and identically distributed as zero-mean
unit-variance Gaussian random variables. We notice that our
assumption does not represent a restriction with respect to the



International Telecommunications Symposium – ITS2002, Natal, Brazil

more general case where� � � ������, � � ����, cor-

responding to�
�
� ���������, because we can revert to our

situation by pre-multiplying the observations�	�
 in (1) with
�����. The assumption� � � �� �� ��� means that� is
distributed over� � ����� according to

���� � � ���

�
�
�

�
������


�

where � � �����
�
��

�

��� ���
�
�

� and ��� 	�
 �
��� 	�� ���
 for a generic matrix� , see [15]. Using (6) and (7)
for this particular choice of the prior on�, we have, up to a con-
stant, the joint distributions on the pairs����� and�����,

������ � ���

�
�
�

�
������� �

�
��� � (8)

and

������ � ���

�
�
�

�
���������

�
����� (9)

respectively.

III. B LIND SEPARATION OFBINARY SOURCES

In this section, we present a possible application for the re-
sults in [12], more specifically, for the induced pdfs in (8)
and (9). We take the data model (1) along with the al-
ready discussed prior on the unknown mixing matrix� �
� �� �� ���, where the dispersion matrix� is assumed
known at the receiver. Moreover, we let
	�
 denote zero-mean,
spatio-temporal white Gaussian distributed noise with known
power��, i.e.,

�	�
 � �
�

	�

	� � �
�

�
� ����Æ	�
� (10)

whereÆ	�
 denotes the discrete-time Kronecker delta (Æ	
 � �
and Æ	�
 �  for nonzero�). We consider that		�
 �

�	�	�
� � � � � 	� 	�
�
� denotes a vector of� independent bi-

nary sources. We assume that each source emits indepen-
dent and identically distributed symbols,���� 		
	�
 � �
 �
���� 		
	�
 � ��
 � ���, for � � �� �� � � � �� . See [2], [3],
[4], [5], [9] for closely related, although non-Bayesian (no prior
is assumed on�), wireless communication scenarios. Assum-
ing that� data samples are available, we have the matricial data
model

� � �� ��� (11)

where� � 	�	�
�	�
 � � � �	� 
 
 denotes the data matrix con-
taining the observations,� � 	 		�
 		�
 � � � 		� 
 
 contains the
information sequences sent by the sources (the�th row cor-
responds to the�th source) and� � 	
	�

	�
 � � � 
	� 
 

stands for the additive noise matrix. We are interested in esti-
mating the binary matrix� in (11) from the available data ma-
trix � , without knowing the mixing channel matrix�. A natural
approach in this Bayesian setting is to look for the maximum a
posterior (MAP) estimates of the transmitted bits,

����� � ������
� � ����

� �� ��� � (12)

where���� stands for the discrete set of� �� binary ma-
trices. With the prior� � � �� �� ���, it is easily seen (after

some straightforward computations) that problem (12) is equiv-
alent to

����� � ������
� � ����

�

��
��
�
������ ���

�
�� ��� ������ �

(13)
where

� � ��� � ������ (14)

Problem (13) is an integer optimization problem over a set with
cardinality�� � ��� . Thus, solving (13) is infeasible due
to the required high-dimensional exhaustive search. An alterna-
tive approach, which leads to a feasible computational scheme,
consists in estimating the most probable realization of the joint
channel-source matrix pair given the available data,i.e.,

��������� � ������
� � �� ������ � � ����

� ���� ��� � (15)

Problem (15) can be solved by the following locally-convergent
iterative algorithm: given an initial estimate��	� for the channel
matrix, let

���
�� � ������
� � ����

������� � ���

���
�� � ������
� � �������

�������
�� ���

for � � � �� �� � � � until a fixed-point is attained. Given our
statistical assumptions, we have, after some calculus, the iterates

���
�� � ����� 
� � ����

���� ������
���� (16)

���
�� � ����
��
�
���
����� � (17)

Solving problem (16) does not require a search over���� . In
fact, since

���� � �����
���� � ��

���

����	�
�����		�

���� �

the optimization problem decouples in� independent subprob-
lems. The�th subproblem only involves the�th column of�.
Thus, the�th column of� ��
��, written	��
��	�
 can be found
by solving

	��
��	�
 � ����� 
� � ��

����	�
�����	
���� � (18)

where�� denotes the set of� -dimensional binary vectors.
Problem (18) requires a search over a much smaller set,��� �
�� , and is easily implemented with parallel processors. The
main drawback of the iterative algorithm in (16) and (17) is its
lack of global convergence. Accurate initial points� �	� are re-
quired to obtain a good performance in practice. In the sequel,
we delineate a method which exploits the SOS of the received
data and the results in (8) and (9) to find educated guesses for
starting the iterations. We present our method only for the PQ
factorization. The extension to the LU factorization is straight-
forward. We start by partially solving for� as explained in
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section II. Namely, consider the sample-mean estimate of the
correlation matrix of the observed data�	�
 given in (3). The
denoised correlation matrix in (2) is estimated as

� � ��	
�  ���� � (19)

where denotes the maximum number in	� ��� ��� � � � � �!� �

which makes the right-hand side of (19) positive-definite. We do
not simply subtract�	
 � ���� from ��	
 as equation (2)
suggests, because, for finite datasets (� ! ), that method
does not guarantee a positive-definite matrix� (which is essen-
tial for the remaining processing). Let

� � � "� � (20)

denote an eigenvalue decomposition of�. That is,� � ����
and" � �����"�� "�� � � � � "� � denotes a diagonal matrix with
positive diagonal entries. In (20), we assume that the diago-
nal of" is sorted in increasing order,"� � "� � � � � � "� .
From (20), the� factor of � � �� is estimated as�� �
� "���� � . We propose to initialize the aforementioned itera-
tive algorithm with

��	� � �� ��� (21)

where �� � ������
� � ����

��� �� � �� �� (22)

That is, �� denotes the most probable realization of the� factor
of the mixing matrix�, given that its� factor is �� . Given the
joint ����� pdf in (8), we have

�� � ����� 
� � ����

��
�
������ �� �

�
� (23)

A closed-form solution for (23) is available [16], and can
be computed as follows. Let� � �#�� denote an
eigendecomposition of�, where � � ���� and # �
�����$�� $�� � � � � $� � denotes a diagonal matrix with its diag-
onal entries sorted in decreasing order,$� � $� � � � � � $� .
Then, �� � � �� . Notice that the determination of�� does not
involve any significative extra computational burden:� is al-
ready available from the step determining�� , see (20), and�
can be computed off-line (it does not depend on the received
data, only on�). As a final remark, perhaps a more defensible
choice for��	� would be

��	� � ������
� � �������

��� ����

or��	� � �� ��, where

�� � ������
� � ����

��� ����

Certainly, both these approaches incorporate more information,
in fact, all the available data� , than our simple method in (21),
which makes use of only the SOS of the observations. However,
it easily checked that both these alternative approaches lead to
computationally untractable problems.

We conducted some computer simulations to assess the effec-
tiveness of our initialization scheme. We considered a scenario
with � � � binary users. The prior on the mixing matrix� is
� �� �� ���, where

� �

�
� 
 �

�
� (24)

This models a scenario where one user strongly dominates
the other, in terms of received power (the channel is not well
conditioned). We varied the signal-to-noise ratio (SNR) from
#$%�� � & dB to#$%��� � � dB, in steps of� � ��& dB.
The SNR is defined as#$% � � ��		�
���� �
	�
�� �

��������. For each SNR,& statistically independent
Monte-Carlo runs were performed. Each Monte-Carlo run con-
sists in generating a realization of�, � and� , see (11), for a
data packet length of� � �. Next, � � � iteration of the
iterative algorithm in (16) and (17) is performed starting from
the educated guess��	� in (21). For comparison, we also per-
formed � � � iteration starting from a random initialization
��	� � � �� �� ���, that is, an independent realization of
the channel model. Figures 1 and 2 present the bit error rate
(BER), averaged over the Monte-Carlos, for user� and user�,
respectively, as a function of the SNR. The solid line denotes
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Fig. 1. BER of user� versus SNR (� � � iteration)
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Fig. 2. BER of user� versus SNR (� � � iteration)

a bound (maximum likelihood bit decoding with the channel�
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known), the solid line with squares refers to our proposed ini-
tialization, and the dashed lined with circles corresponds to the
random initialization. As can be seen, our educated guess per-
mits to outperfom the random initialization. In figures 3 and 4,
we plot the results of similar simulations, but allow for� � �
loops of the iterative algorithm (16) and (17). As expected,
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random initialization
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Fig. 3. BER of user� versus SNR (� � � iterations)

5 10 15 20
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10
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10
0

SNR (dB)
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optimum

Fig. 4. BER of user� versus SNR (� � � iterations)

allowing for more flops improves the BER for both users, irre-
spective of the initialization method. However, the random ini-
tialization is still outperformed by our approach over the entire
range of SNRs simulated. Figures 5 and 6 show the results cor-
responding to� � ' iterations of the algorithm in (16) and (17).
We can draw conclusions similar to the previous ones. We con-

ducted a set of similar computer simulations, but using the LU
factorization method. The performance was identical to the PQ
factorization.

IV. T RAINED-BASED CHANNEL IDENTIFICATION

In this section, we discuss another application for the re-
sults in [12], namely the pdfs in (8) and (9). The data model
is as in (11), and we assume the additive observation noise to
have the same statistics as in section III, see (10). Although
not necessary for the method to be discussed, we also let the
sources be binary and follow the same statistical characteriza-
tion detailed in III. Moreover, we maintain the prior on the
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Fig. 5. BER of user� versus SNR (� � � iterations)
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Fig. 6. BER of user� versus SNR (� � � iterations)

mixing matrix,� � � �� �� ���. We consider a trained-
based channel identification scenario. We assume that� of the
� emitted symbols by the� sources, say, the sources’ packet
header� � 	 		�
 		�
 � � � 		� 
 
, is known by the receiver. This
preamble is included by the sources in order to assist the re-
ceiver in acquiring or estimating the channel. Once the channel
� is estimated, it can be used to decode the remaining infor-
mation symbols in		� � �
� 		� � �
� � � � � 		� 
 from the ob-
servations�	� � �
� �	� � �
� � � � � �	� 
. A possible channel
identification strategy is

����� � ������
� � �������

��� � � �� (25)

where� � 	�	�
�	�
 � � � �	� 
 
 denotes the observed packet
header. That is,����� denotes the most probable channel real-
ization given the available header of data observations. Notice
that this approach does not take into account all the received
data, only the header. It can be verified that processing all ob-
servations would lead to a computationally infeasible solution,
for basically the same reasons exposed in section III (beyond the
time instant� � � , the transmitted data is unknown, represent-
ing ������ � bits, and the prior must be integrated against all
possible source sequences). It is straightforward to check that,
under our statistical framework, we have����� � ������

�
,

where�� is defined in (14). We propose an alternative channel
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identification strategy, exploiting the SOS of the received data.
Again, we present our results based only on the PQ factoriza-
tion (the extension to the LU factorization is similar). Let��
denote the estimate of the� factor of� � ��, computed from
the received data� as explained in section III. We propose to
estimate the channel as

�� � �� ��� (26)

where �� � ������
� � ����

��� � � � � � �� ��
Thus, �� denotes the most probable realization of the� factor
of the mixing matrix�, given that its� factor is �� and the
available packet header� . This strategy makes the totality of
the received data participate in the channel estimate, through its
�nd-order statistics. Using the Bayes rule and the identity in (8)
yields

�� � ����� 
� � ����

��
�
�� �� ����

�
�� ��

�
�� ������ � (27)

Problem (27) does not afford, in general, a closed-form solution.
However, due to the special structure of the constraints, it allows
for efficient low-complexity solvers exploiting the curvature of
the Lie group����. These algorithms are beyond the scope of
this paper and are discussed in [13].

We carried out some computer simulations to assess the accu-
racy of both channel identification strategies,i.e., (25) and (26).
The prior on the channel is unchanged, see (24). We varied the
SNR between#$%�� �  dB and#$%��� � �& dB in steps
of � � ��& dB. For each SNR,� statistically independent
Monte-Carlo runs were performed. Each Monte-Carlo involves
realizing�, � and� (11). The packet length is� � �, and
we assume that the training header has length� � �. Both
channel estimators����� (25) and �� (26) are implemented,

and the respective squared channel errors
��� ����� ��

���� and��� ����
���� are computed. Figure 7 shows the mean-square er-

rors (MSE) obtained for both channel estimates. The dashed line
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Fig. 7. MSE of channel estimate: non-SOS (dashed) and SOS (solid)

with circles refer to the non�nd order statistics based channel

estimator �����, while the solid line corresponds to the SOS-
based channel estimator��. We can see that the SOS based esti-
mator achieves the best performance overall the SNRSs consid-
ered.

V. CONCLUSIONS

We study how�nd order statistics (SOS) can be exploited
in Bayesian setups for improving the performance of non-SOS
based estimators. We addressed two problems: blind separa-
tion of co-channel binary sources and multi-user channel iden-
tification with tranining sequences. A prior is assumed on the
mixing channel matrix. The SOS of the observations convey
information about the unknown underlying channel. They per-
mit to resolve the channel, modulo an orthogonal ambiguity fac-
tor, which becomes a random object under the Bayesian frame-
work. We exploited the distribution of this residual mixing ma-
trix for improving the performance of non-SOS based estimation
schemes.
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