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Abstract— We study how 2nd order statistics (SOS) can be exploited 2nd order spectra [6], analytical signal separation for constant-
in wo signal processing problems, blind separation of binary sources modulus sources [2], iterative demodulation of finite-alphabet
and trained-based multi-user channel identification, in a Bayesian context . . . .
where a prior on the mixing channel matrix is available. It is well known sources [3]' gl(_)ba“y Clon\./ergent Iterative separatpn of mdepgn-
that the SOS of the received data permit to resolve the unknown mixing dent and identically distributed sources by kurtosis-based crite-

matrix, up to an orthogonal factor. In a Bayesian framework, this residual rjg [11]_

orthogonal mixing matrix becomes a random object in its own right, with an | . th L. tri b deled )
associated distribution over the group of orthogonal matrices. This distri- n mahy scgnarl_os, e_mlxmg ma_ '?'X can e mode e asaran
bution is induced by the prior on the mixing matrix, and must be known for - dom object with given prior probability density function (pdf).
optimum statistical processing. We rely on a previous theoretical work to |n [12], we studied how a given pdf on the set of non-whitened

prowde 'these answers, and discuss applications for'thls induced probabil- mixing matrices contracts to a pdf on the lower-dimensional or-
ity density function (pdf) over the orthogonal group, in the two aforemen-

tioned signal processing problems. Preliminary results, obtained through thogonal group containing the whitened mixing matrices. The
computer simulations, demonstrate the effectiveness of incorporating this contribution of this paper consists in providing signal process-

induceq distribution asspciated with the residual orthogonal matrix into ing applications for the theoretical framework developed in [12].
the design of several estimators. . .
We show how the derived priors over the orthogonal group can
be exploited for improving performance in two problems: blind
. INTRODUCTION separation of co-channel binary sources and trained-based chan-
LIND source separation (BSS) has been an active areansfl identification in multi-antenna systems. Further applications
research over the past few years [1]. It finds direct appi¢an be found in [13].
cation in the exploding field of wireless multi-user communica- Our paper is organized as follows. In section II, we introduce
tions with spatial diversity, e.g., Space Division Multiple Acceseur data model and briefly review the work in [12]. We assume
(SDMA) networks. In these wireless systems, unknown spadéat the non-whitened random mixing matrix has a zero-mean
time channels mix the co-channel user signals prior to base staatrix variate normal distribution with given dispersion matrix.
tion reception. Blind signal separation techniques are neededdaparticular case of this prior is commonplace in works with
the receiver to reconstruct the source signals from the antemmaltiple-antenna systems where it is known as the independent
array observations [2], [3], [4], [5], [6]- Rayleigh fading assumption [14]. We handle a more general
A common first step in BSS techniques consists in exploitiodel allowing correlation between the entries of the mixing
ing the 2nd order statistics (SOS) of the observations to pamatrix. We present the results of [12] in which we examined
tially resolve the unknown mixing matrix [1], [7], [8], [9], [10], how this prior on the non-whitened matrices contracts to a pdf
[11]. Usually, the SOS of the received data are used to tuawer the group of orthogonal matrices, under the action of two
the unknown mixing matrix into an unknown rotation mixingdistinct prewhitening methods. The two prewhitening methods
matrix. This simplifies the remaining processing as the algeensidered are based on the polar andiibiedecomposition of
braic constraints of the orthogonal group can be efficiently eae non-whitened mixing matrix, respectively. In section Ill, we
ploited for algorithmic purposes. Notice that the original (honaddress the problem of blind source separation when the mixing
whitened) mixing matrix often lacks any interesting structurematrix is drawn from a known zero-mean Gaussian prior. We
The residual unknown rotation matrix can be solved under seapply the results in [12] to find educated guesses for initializing
eral identification strategies depending on the source charactetecally convergent source separation algorithm. In section IV,
istics, number of available data samples, etc. Some optionsre address the problem of channel identification in the context
clude: iterative joint diagonalization of several cumulant masf multi-antenna systems. We show how the pdfs derived in [12]
trices for non-Gaussian signals [7], iterative joint diagonalizaan be exploited to improve the accuracy of trained-based chan-
tion of several covariance matrices for instantaneously mixeel estimators. Section V contains the main conclusions of our
stationary sources with sufficiently diverse but unkn@nd or-  work.
der spectra [8], closed-form isometry fitting for convolutively Throughout the paper, we use the following notation. The set
mixed stationary sources with sufficiently diverse and knowsf » x n matrices with real entries is denoted®y*". Matrices
All authors are with the Instituto de Sistemas e BidH, Instituto are written in uppercase. The symb()l};T, d_et(-), ® andl,
Superior Ecnico, Torre Norte, Piso 7, Av. Rovisco Pais, 1049denote the transpose operator, the determinant, the Kronecker

001, Fax: +351 21 841 8291.  E-mails:{jxavierval} @isr.ist.utl.pt, %r]‘ic;ductand the x n identity matrix, respectively. The notation

paulomiguel@yahoo.com. This work was supported by the FCT Programa Op- B AT
eracional Sociedade de Inforngac(POSI) in the frame of QCA IlI, under con- (n,R), O(n) = {Q FQRTQ= In} andL(n), stand for the

tract POSI/2001/CPS/38775 groups ofn x n non-singular, orthogonal and lower triangular



International Telecommunications Symposium — ITS2002, Natal, Brazil

matrices with positive diagonal entries, respectively. The coiié for a given prior onA. The results derived in [12] are ex-
of positive definite matrices of sizex n is represented bif(n). pressed in the setting of Riemannian geometry [17], [18]. This

Additional notation is introduced as needed. viewpoint is natural and almost mandatory since we are dealing
with distributions over lower-dimensional submanifolds of Eu-
Il. DATA MODEL AND PREVIOUS WORK clidean spaces, e.g., the orthogonal gr@p/), the cone of
We adopt the standard discrete-time instantaneous linear nmip@sitive definite matriceB(21), etc. In the sequel, we assume
ture data model, e.g., see [1], [8], the reader to be acquainted with such differential-geometric con-
cepts. We try to use notation compatible with [17]. We re-
z[n] = As[n] + wln], (1) ogardO(M), P(M) andL(M) as differentiable manifolds taking
their Riemannian structure from the corresponding embedding,
where z[n] = (z1[n],...,zm[n])" represents theM- e.qg.,. : O(M) - GL(M,R), «(X) = X. Here,GL (M, R)
dimensional vector of observations, € RM*M stands for js identified with an open subset of the Euclidean sgaée
the mixing matrix,s[n] = (s1[n],...,su[n])” contains theM by interpreting all x M matrix as aM 2-dimensional vec-
source signals, and[n] = (wi[n],... ,wM[n])T models ob- tor. All these manifolds are orientable and we &ty (vg),

servation noise. Here, for simplicity, all data objects take vafdg sy, Qp(ar) andQy 1) denote the corresponding volume el-
ues in the field of real numbers. As usual, the sources are aments (the particular choice of orientation is not important to
sumed to be zero-mea®nd order stationary and uncorrelatedus) derived from their Riemannian metrics. Moreover, when
R, = E{s[n]s[n]"} = I, and the mixing matrix is non- taking the Cartesian product of manifolds, we implicitly as-
singular,A € GL(M,R). We assume that the procesfn] sume the canonical construction for the product metric, hence,
is zero-mean and wide-sense stationary with known correlatifor the volume element of the product manifold. In this Rie-
matrix R,,[0] = E {w[n]w[n]” }. It is well known that thend mannian context, a mass distribution or pdf over any of these
order statistics of the observations can be exploited to partiallyanifolds is a non-negatively oriented exterior form. As an ex-
solve for the unknown mixing matrid. Here, we consider two ample, a mass distributiof, say, over the orthogonal group,
alternative methods based on the polar and/ttiedecomposi- belongs to the bundle of alternating tensgys (O(M)), where
tion of A, respectively. Both methods act on the so-called d&s = dim QO(M) = M (M — 1)/2. Since for any given dis-

noised correlation matrix af[n], tribution Q over O(M ), we haveQ = f Qg for an unique
. nonnegative smooth functioh : O(M) — R, we use the ter-
R = R,[0] = R, [0] = AA", (2)  minologymass distribution for either(2 or f. This also applies

to the other manifolds considered in this paper.
In the sequel, we shall make use of the following results
from [12]. Letp(A) denote the pdf (prior) on the mixing matrix

whereR,[0] = E {z[n]z[n]"}. In practice,R,[0] can be re-
placed by its sample-mean estimator

L X A € GL(M,R). Then, the factorizatiodl = P(Q induces the
I/%;[O] =~ Z z[n]an]”, ©) pdf onP(M) x O(M) given, up to a normalizing constant, by
i p(P,Q) = p(PQ)g(P), ©)

whereN denotes the number of available data sampiefo- . -
cusing first on the polar decomposition, write= PQ where Where the functiog : P(M) — R satisfiey (I (P)) = g(P),
P € P(M) andQ € O(M). This factorization exists and it is Wherelv P(@ — IP(n) denotes conjugation by € O(n),
unique for anyA € GL (M, R) [16]. Substituting in (2) yields 1v(P) = VPV™. Likewise, the factorizationl = LU induces
R = P2. Thus, P can be obtained from the availabieas its & PdfOnL(M) x O(M) given, up to a normalizing constant, by
square-rootP = R'/2. Thus, the SOS of the data permit the _
receiver to recover the factdt of the mixing matrix4A = PQ. p(L, U) = p(LU)A(L), @
The factor@ is not resolvedii) Using theLU decomposition, whereh : L(M) — R is given byh(L) = pm(L)/det(L).
we can write also uniquell = LU, whereL € L(M) and Here, the functiopm : R"*" — R is defined, forX € R"*",
U € O(M). Thus,R = LLT, meaning thaf. may be obtained as
from R as its unique Cholesky factor. Again, the mixing matrix
A = LU is partially resolved. The factdt is revealed by the Tin T2 ot Tim
correlation matrix of the observations, Hiiremains unknown. m(X) = TI" _ det Tor T2 v Tom
After either the PQ or LU pre-processing step is performed, p m=1 : :

our original data model (1) switches to Tl Tm2 - Tom

z[n] = PQs[n] + wn] (4) In this paper, we restrict ourselves to the scenario where

has a zero-mean matrix variate normal distribution with covari-

or ance matrix/y; ® ¥, denotedA ~ N (0,1 ® ¥), where

#[n] = LUs[n] + win], ®) ¥ € P(M), see [15]. This means that < Z¥!/2 (equality in
with P or L known, respectively. If the original mixing ma- distribution), whereZ denotes ad/ x M random matrix whose
trix has a prior,A ~ p(A), then the unknown residual orthog-entries are independent and identically distributed as zero-mean
onal matriceg) andU in (4) and (5), respectively, denote ran-unit-variance Gaussian random variables. We notice that our
dom objects. In [12], we investigated the distributiongbbr assumption does not represent a restriction with respect to the
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more general case where~ N (0,X ® ¥), & € P(M), cor- some straightforward computations) that problem (12) is equiv-
responding tad £ $'/2Z¥1/2, pecause we can revert to oudlent to

situation by pre-multiplying the observation$n] in (1) with . 1 B

$-1/2, The assumptiosd ~ A (0, ), ® ¥) means thatd is SMAPp = argmax ok (XSTAG SXT)—Mlog (det As),

distributed oveGL (M, R) according to S €Buxn 13)
_ 1. .7 where
p(A) = acetr {—§A\Il A } , Ag = SST 4+ o201, (14)
L2 M Problem (13) is an integer optimization problem over a set with
where @ = (27)72Mdet (V)2 and etr{X} =

) _ _ cardinality #8 = 2MN_ Thus, solving (13) is infeasible due
exp {tr (X)} for a generic matrix\’, see [15]. Using (6) and (7) g the required high-dimensional exhaustive search. An alterna-
for this particular choice of the prior o, we have, up 1o a con- e anproach, which leads to a feasible computational scheme,
stant, the joint distributions on the paits, @) and(L, U), consists in estimating the most probable realization of the joint
channel-source matrix pair given the available diagg,

Q) =e (z0U QTP ar)

(A, S)vap = arg max p(A,S1X). (15)
and A€ GL(M,R),S € Buxn
1 _
p(L,U) = etr <_§U‘I’ 1UTLTL> h(L), (9  Problem (15) can be solved by the following locally-convergent

. iterative algorithm: given an initial estimat&®) for the channel
respectively. matrix, let

I1l. BLIND SEPARATION OF BINARY SOURCES glk+1) arg max p(A(k) S| X)

In this section, we present a possible application for the re- S € Byuxn

sults in [12], more specifically, for the induced pdfs in (8) A1) A gk |
and (9). We take the data model (1) along with the al- N A :rgﬂdr?zxk) p(4,8 R

ready discussed prior on the unknown mixing matdx ~
N (0,In ® ¥), where the dispersion matri¥ is assumed for k = 0,1,2,... until a fixed-point is attained. Given our

known at the receiver. Moreover, we lefn] denote zero-mean, statistical assumptions, we have, after some calculus, the iterates
spatio-temporal white Gaussian distributed noise with known

powero™, i.e. S+ = argmin HX - A(k)Suz (16)
Ry[k] = E{wln]wln — k"} = a*Iyd[k],  (10) S € Barxw
(k+1)  _ (k+1)T A —1
whered[-] denotes the discrete-time Kronecker delfd)(= 1 A XS Agisn - (17)
and g[k] = 0 for nonzerok). We consider thas[n] = solving problem (16) does not require a search dgr . In
(s1[n],...,sm[n])" denotes a vector oM independent bi- fact, since

nary sources. We assume that each source emits indepen-
dent and identically distributed symboRrob {s,,[n] = 1} =

Prob {sp[n] = -1} = 1/2,form =1,2,..., M. See [2], [3],

[4], [5], [9] for closely related, although non-Bayesian (no prior

is assumed ont), wireless communication scenarios. Assumthe optimization problem decouplesMindependent subprob-
ing that/V data samples are available, we have the matricial daéans. Thenth subproblem only involves theth column ofS.

x = 405" = 3 [t - a0l
n=1

model Thus, thenth column ofS (*+1) | written s(*+1)[n] can be found
X =AS+W, (11) by solving

whereX = [z[1]z[2] --- z[N]] denotes the data matrix con- k1) ) E

taining the observations§ = [s[1]s[2] - - - s[N]] contains the s n] = argmin Hfﬂ[n] — Al SH ; (18)

information sequences sent by the sources ftile row cor- 5 € Bm

responds to thenth source) andV = [w[l]w[2] - -+ w[N]]

here B, denotes the set af/-dimensional binary vectors.

stands for the additive noise matrix. We are interested in e roblem (18) requires a search over a much smallef#t; =

mating the binary matri¥ in (11) from the available data ma- 2M and is easily implemented with parallel processors. The

trix X, W'thOUt _knowmg _the mixing (_:hannel matri. A natL_JraI main drawback of the iterative algorithm in (16) and (17) is its
approach in this Bayesian setting is to look for the Maximumdc of global convergence. Accurate initial points®) are re-
posterior (MAP) estimates of the transmitted bits, :

quired to obtain a good performance in practice. In the sequel,
(12) we delineate a method which exploits the SOS of the received

data and the results in (8) and (9) to find educated guesses for

starting the iterations. We present our method only for the PQ
whereB;« v stands for the discrete set df x N binary ma- factorization. The extension to the LU factorization is straight-
trices. With the priotd ~ N(0, I, ® W), itis easily seen (after forward. We start by partially solving fod as explained in

§MAp: argmax p(S|X),
S € Buxn
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section Il. Namely, consider the sample-mean estimate of theWe conducted some computer simulations to assess the effec-
correlation matrix of the observed datf] given in (3). The tiveness of our initialization scheme. We considered a scenario

denoised correlation matrik in (2) is estimated as with M = 2 binary users. The prior on the mixing matrikis
o N (0,1 ® ), where
R = R,[0] — Bo* I, (19)
v = [ 100 ] (24)
whereS denotes the maximum number{i®, 0.1,0.2,...,0.9,1} “ 10 1"

which makes the right-hand side of (19) positive-definite. We do
not simply subtracR,,[0] = ¢2I,; from I/%;[O] as equation (2) This models a scenario where one user strongly dominates
suggests, because, for finite dataséfs ¢ o), that method the other, in terms of received power (the channel is not well

does not guarantee a positive-definite maﬁh@which is essen- conditioned). We varied the signal—t_o-noise ratio (SNR) from
tial for the remaining processing). Let SNRmin = 5 dB t0 SNRmax = 20 dB, in steps oA = 2.5 dB.

The SNR is defined aSNR = E||As[n]||*/E||w[n]]|® =
R=vVAVT (20) |A|[?/Mo?. For each SNRj5000 statistically independent
Monte-Carlo runs were performed. Each Monte-Carlo run con-
denote an eigenvalue decompositionfof That is,V € O(M) sists in generating a realization df S andW, see (11), for a
andA = diag(A1, As, ..., Ayr) denotes a diagonal matrix with data packet length oV = 200. Next, I = 1 iteration of the
positive diagonal entries. In (20), we assume that the diagéerative algorithm in (16) and (17) is performed starting from
nal of A is sorted in increasing ordek; < Ay < --- < Ay, the educated guest®) in (21). For comparison, we also per-
From (20), theP factor of A = P(Q is estimated as® = formedl = 1 iteration starting from a random initialization
VALY2VT. We propose to initialize the aforementioned iterad'® ~ N (0,1 ® ¥), that is, an independent realization of
tive algorithm with the channel model. Figures 1 and 2 present the bit error rate
A40) — 13@’ 21) (BER), averaged over the Monte-Carlos, for us@nd user,

respectively, as a function of the SNR. The solid line denotes
where

0= agmax p(@Q|P=P). @ ‘ |
Q € O(M) '

That s, denotes the most probable realization of héactor - random. initialization
of the mixing matrixA4, given that itsP factor is P. Given the e
joint (P, @) pdfin (8), we have

@ = argmin tr (QT_IQTﬁQ) . (23) 7
Q € O(M)

10°E

A closed-form solution for (23) is available [16], and can optimum

be computed as follows. Le® = ZDZT denote an

eigendecomposition off, where Z € O(M) and D = - ‘ ‘

diag(dy,ds, . ..,dy) denotes a diagonal matrix with its diag- ® ° SR (@) e *

onal entries sorted in decreasing ord&r,> dy > --- > dy,.

Then,@ = VZT. Notice that the determination @ does not

involve any significative extra computational burdén:is al-

ready available from the step determinirﬁg see (20), andZ "
can be computed off-line (it does not depend on the received
data, only on¥). As a final remark, perhaps a more defensible
choice forA® wouldbe g o114 2 fandom initialization

- - _ 4

Fig. 1. BER of usetl versus SNRI = 1 iteration)

A® = argmax  p(A4]X),
A € GL(M,R)

10°F

or A© = PQ, where

~ optimum
@ = argmax p(Q|X).
Q€ O(M)
Certainly, both these approaches incorporate more information, 7% m I 20
in fact, all the available dat&, than our simple method in (21), e
which makes use of only the SOS of the observations. However, Fig. 2. BER of usel versus SNRL = 1 iteration)

it easily checked that both these alternative approaches lead to
computationally untractable problems. a bound (maximum likelihood bit decoding with the chandel
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known), the solid line with squares refers to our proposed ini- 10
tialization, and the dashed lined with circles corresponds to the
random initialization. As can be seen, our educated guess per-
mits to outperfom the random initialization. In figures 3 and 4, w0’k
we plot the results of similar simulations, but allow fbr= 2 <
loops of the iterative algorithm (16) and (17). As expected,

107E

optimum

107

10

SNR (dB)

Fig. 5. BER of usetl versus SNRI = 3 iterations)

optimum 3 10

| I
5 10 15 20
SNR (dB)

Fig. 3. BER of useil versus SNR{ = 2 iterations)

10°F

optimum

- random initialization 10° s i )

0~ SNR (dB)

Fig. 6. BER of use versus SNRI = 3 iterations)

mixing matrix, A ~ N (0,I); ® ¥). We consider a trained-
based channel identification scenario. We assumeRtadtthe

N emitted symbols by thé/ sources, say, the sources’ packet

‘ ‘ headeiS = [s[1] s[2] - - - s[P]], is known by the receiver. This

® 1 SR (@8) * 0 preamble is included by the sources in order to assist the re-
ceiver in acquiring or estimating the channel. Once the channel
A is estimated, it can be used to decode the remaining infor-
mation symbols irs[P + 1], s[P + 2],..., s[N] from the ob-

allowing for more flops improves the BER for both users, i"eéervationSr[P 4 1],2[P +2],...,2[N]. A possible channel
spective of the initialization method. However, the random i”identification strate’gy is Y

tialization is still outperformed by our approach over the entire

range of SNRs simulated. Figures 5 and 6 show the results cor- Aviap = argmax  p(4|X), (25)
responding td = 3 iterations of the algorithm in (16) and (17). A € GL(M,R)

We can draw conclusions similar to the previous ones. We con-

ducted a set of similar computer simulations, but using the LiWhere X = [z[1]z[2] - -- #[P]] denotes the observed packet

A

factorization method. The performance was identical to the R ader. That isAyiap denotes the most probable channel real-

optimum

Fig. 4. BER of use versus SNRI = 2 iterations)

factorization. ization given the available header of data observations. Notice
that this approach does not take into account all the received
IV. TRAINED-BASED CHANNEL IDENTIFICATION data, only the header. It can be verified that processing all ob-

In this section, we discuss another application for the réervations would lead to a computationally infeasible solution,
sults in [12], namely the pdfs in (8) and (9). The data modédr basically the same reasons exposed in section Ill (beyond the
is as in (11), and we assume the additive observation noisetitve instant: = P, the transmitted data is unknown, represent-
have the same statistics as in section Ill, see (10). Althougtg 2N ~F) bits, and the prior must be integrated against all
not necessary for the method to be discussed, we also let p@ssible source sequences). It is straightforward to check that,
sources be binary and follow the same statistical characterizerder our statistical framework, we havigiap = XYSTAL,
tion detailed in Ill. Moreover, we maintain the prior on thewhereAg is defined in (14). We propose an alternative channel
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identification strategy, exploiting the SOS of the received datastimatorfTMAp, while the solid line corresponds to the SOS-
Again, we present our results based only on the PQ factorizsased channel estimatdr We can see that the SOS based esti-
tion (the extension to the LU factorization is similar). LBt mator achieves the best performance overall the SNRSs consid-
denote the estimate of théfactor of A = P(@), computed from ered.

the received datX as explained in section Ill. We propose to

estimate the channel as V. CONCLUSIONS
o an We study how2nd order statistics (SOS) can be exploited
A= PQ, (26) in Bayesian setups for improving the performance of non-SOS

based estimators. We addressed two problems: blind separa-
tion of co-channel binary sources and multi-user channel iden-
tification with tranining sequences. A prior is assumed on the
mixing channel matrix. The SOS of the observations convey

Thus,@ denotes the most probable realization of @dactor information about the unknown underlying channel. They per-
of the mixing matrixA, given that itsP factor is P and the mit to resolve the channel, modulo an orthogonal ambiguity fac-
available packet header. This strategy makes the totality of ©©7 Which becomes a random object under the Bayesian frame-
the received data participate in the channel estimate, through'f&<- We exploited the distribution of this residual mixing ma-

2nd-order statistics. Using the Bayes rule and the identity in (§}* fOr improving the performance of non-SOS based estimation
yields schemes.

where R R
Q= argmax p(Q|X,P=P).
Q € O(M)
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