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Abstract—We address the problem of joint source symbol detection and the symbol period” (harrowband source assumption). Assum-
multi-channel estimation in time-selective digital communication scenarios. |ng that themnth receiver is time_synchronized to the transmitted

Our approach is based on a statistical model which decouples the time dy- _. h .
namics of the multi-channel vector in amplitude and direction. We com- signal, the complex bandpass signal picked byt antenna

pute the most probable emitted symbol sequence and channel realizationiS r'm (t) = T (1)e7?™ et wherewy, (£) = R (t) b(t) + wy, (t)

for this statistical model, given the set of array observations. Our maxi- stands for its baseband equivalent_ Here,

mum a posterior (MAP) receiver consists of a bank of parallel processors.

Each processor finds the most probable channel realization for a given sym- h (t) —c (t)ejem (t) (1)
bol sequence via a relaxed semidefinite programming (SDP) re-formulation m - m

of the original estimation problem. Computer simulations are included to . .

assess the capability of our technique in acquiring fast-changing flat-fading denotes the net baseband gaip,(¢) is the complex-valued

channels. fading channel,d,,(¢) models carrier phase drifts between
the source and thenth spatial sensor, and,,(t) stands for
I. PROBLEM FORMULATION zero-mean complex additive white Gaussian noise (AWGN)

ONSIDER a wireless communication scenario in which With power spectral density (PSD)N, Watts/Hz, that s,

multiple antenna receiver observes a mobile digital sourde Wm()wm(t —7)°} = 2Nod(7). Let the lowpass signal

as depicted in figure 1. The source transmits the bandpass cc?‘r’ﬁ—(t)’ which is available at the receiver af‘“%(t) is demod-
ulated to baseband, be oversampled by an integrate-and-dump

(I&D) circuit yielding the discrete-time sequence
1 nT+(p+1)A
T [nP+p] = X Ty,(t)dt, p=0,1,...,P-1,
LN I ———— b(t) _ nT+pA
T P i where the integeP = T'/A > 1 denotes the number of data
‘ / b[n] samples taken in each symbol period. Assuming thatt) is
i constant during the interval of integration, we have
Yy ) e Tm[nP + p] = hy[nP + p]b[n] + wn[nP +p],  (2)
whereh,[nP + p] = hy, (0T + pA) and
Z1 (t) b T (t) 1 nT+(p+1)A
wp[nP +pl = — Wiy, (t) dt.
Rx A nT+pA
Let N be the number of successive symbol intervals thus
l recorded by the receiver, startingtat= T for convenience of
7 (1), ..., har(t),bn] notation. Lettingk = nP + p denote the time-index in (2),
) e . ) tacking the data sequencesg,[k] into the complex vector
Fig. 1. Flat-fading multi-link channel with a mobile source (baseband modei[k] _ (xl[k], xg[k], . ;EM[k])LW, and collecting the vectors
plex signals(t) = b(t)e/>"/<t, wheref. denotes the frequencyw[k]’ k=1,2,...,K = NPinto the data matrix
of the complex sinusoidal carrier. The baseband information-
) . o o X = 1 2] - K] |, 3
bearing signal is given by(t) = S _ bn]p(t —nT) [2ll] =[] 2[K] ] ®)

whereb[n] denotes thesth emitted information symboll” is  yje|ds the matricial data model

the symbol period ang(t) is a unit amplitude rectangular shap-

ing pulse of duratioI” seconds. We assume a flat-fading chan- X =Hdiag(b®1p) + W. 4)
nel between the source and each one offtheeceiving anten-

nas,i.e., the maximum delay spread of the multipath channélere,

linking the source to each spatial sensor is a small fraction of H=[h[1] h[2] --- h[K]] (5)
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(w1 [k], walk], ... ,wM[k])T. We assume that the additive noiséarge number of these discrete propagation paths, it is plausi-
processes are spatially white, ble to invoke the central limit theorem and model the complex
o2 gainc,,(t) as a wide-sense stationary (WSS) complex circular
E{wlklw[k —1]"} = < Tardll], (6) Gaussian process [3], [4], [5]. Moreover, (¢) can be taken

as zero-mean (Rayleigh fading model) if there is no direct line-
whereg? = 4No/A, ()" denotes the Hermitean operatobf-sight (LOS) component, whereas a nonzero mean must be
(transpose conjugate) aafl] stands for the discrete-time Kro-included if a direct specular component is present (Rice fading
necker signald[0] = 1 andd[l] = 0 for [ # 0). For a generic model). Besides the Rayleigh/Rice distribution, other first-order
vectory = (v1,vs,...,v,) ", diagv) denotes the diagonal ma-statistics modeling the envelope of the complex-valued fading
trixwith vy, v3, ..., vy, @s its main diagonal entries. The symbothannel,|c,, (t)|, have been considered in the literature, e.g.,
® stands for the Kronecker product and, for an integef ,, is  the Nakagami-q (Hoyt), the Nakagami-n, and the Nakagami-
then x n identity matrix andl,, = (1,1,...,1)" represents the m models, see [4] and the references therein. The autocorre-
n-dimensional column vector with all entries equallto lation function of the WSS Gaussian procesg(t), 7., (1) =

In this paper, we address the problem of jointly detecting the{c,, ()c,, (t — )"}, dictating the second-order statistics of

emitted information sequendeand estimating the channel ma-the fading channel, can be obtained for some specific scattering
trix H from the available data matriX', see (4). We work propagation configurations from Doppler-shift motion-induced
under a Bayesian framework. Moreover, we assume that onjjtysical considerations. For example, the assumption of an ide-
small data bursts are available for processing, say, with lengflized isotropic scattering scenario (the mobile is surrounded
N =~ 4 symbols. This precludes the usagend order statistics by a cluster of scatterers uniformly distributed in angle), an
methods [1], [2]. We assign probabilistic priors to both ranuniform azimuthal power gain for theith receiving antenna
dom objectsH (channel) and (source), and present a sub{omnidirectional sensor), and a constant vehicle speed, leads
optimum implementation of their corresponding maximum-ao the Clarke’s model [5] with the fading autocorrelation given
posteriori (MAP) estimators. Our paper is organized as fol; _ 2 2 _ 2 _
lows. In section I, we describe and motivate the priors ngJ]y rm(r) = omJo 2nfur). Here.op, = Eqlen()]"y de

the channel and source. We decouple the time dynamics of figes the power of the fading procesf,(-) is the zero-order

channel vectoh[k] in amplitudep[k] = ||h[k]|| and direction Bessel function of the first ki.an,m = v, f./cis the quimum
ulk] = h[k]/ |R[K]|l. Separate priors are then assigned to t oppler frequency in Hzy,,, is the speed of the mobile source

stochastic sequencés[k]} and {u[k]}. For simplicity, we re- relative to themth antenna in m/sf. stands for the central fre-

. . ; 8
strict ourselves in this paper to a constant fading envelope, quency of the transm|t.ted signal in Hz, aac_l: 3 x 10 m/s
we assume that/k] = pfor k = 1,2 K, wherep denotes a denotes the speed of light. Clarke’s model is employed in land

random variable uniformly distributed in an interya) A]. The mobile scenarios [4]. Other fading autocorrelation models are

stochastic sequendeu[k]} is modeled as a first-order Markovava”able for distinct propagation scenarios, see [4]. The phase

process on the unit-sphere. The conditional transition prob%r-ift amr(]t) in (1) models non—chhanngl induced phase.shifts be-
bility of w[k] |u[k — 1] is a von Mises-Fisher distribution with tween the transmitter and thweth receiver, e.g., transmitter and

local oscillator asynchronism. As an illustrative example, con-

1-parameter£) model permits to capture the characteristics gyider anM = 2antenna array receiver which ob;erves a digital
several fast flat-fading digital communication channels. In set24¢€ with symbol period” = 0.1 ms and carner_frequency
tion 111, we discuss a sub-optimum implementation of the MAFfC = 1 GHz. We assume Fhat the vehicle moves with a speed of
estimators off andb for the given probabilistic prior. We show ¥ =~ 120 Km/h. As the fading channel model, we takg(t) and

how the optimization problem underlying the MAP estimatioﬁ’Q(t) as zero-mean unit-power s_tatlstlcally mde_pendent_ com-
of H, for a fixed data sequende can be approximated by aplex Gaussian processes, each with autocorrelation function pre-

semidefinite program (SDP). This class of convex progra icted by Clarke’s model. Moreover, we assume that the crys-

which extend linear and quadratic programming, has attracti} 0Scillator at the receiver has a stability pf= 0.5 ppm
much attention from the optimization community in the padPart Per million),i.e, we letfy,(t) = 2 fst, where the os-
recent years, leading to the development of powerful prima‘flIIator frequency erroffy = nfe = 500 Hz,_f_or m = 1,2.
dual interior-point solvers. These algorithms can find the globaft 2(t) = p(?)u(t) denote the decomposition of the chan-
minimum of SDPs with polynomial worst-case complexity ang§€! Vectorh(t) in amplitudep(t) = ||¥(t)|| 2 0and direction
exhibit very good performance in practice. In section IV, wat(t) = h(£)/ ||h(t)[| = (u1(t),u2(2))" . In figures 2 and 3, we
present some computer simulations to assess the performanc&ér@ realization dk(z), through its componenjg(t) andu(#),
our MAP estimator in acquiring fast flat-fading multichannel2Ver a time span ol = 4 symbol periods. We have takef

mean (or modeq[k — 1] and concentration parameter This

Section V concludes our paper. equi-spaced time samplesgt) andu(t) in the observation pe-
riod [0, NT], and computed some statistics. For this realization,
II. CHANNEL AND SOURCE PROBABILISTIC PRIORS the mean value of the channel amplitudepis= 1.9234 with

= in idealized radi . . . a standard deviation af, = 0.0907. Thus, the envelope ex-
or certain idealized radio propagation environments, it jxpis 4 fiuctuation ot,/p = 4.7 % about its nominal valug.

possible to deduce analytically some simplified statistical mo he mean values of Re (1), Reus(t), Imu, (1), IMus(t) are
els for the fading channel,,(t) in (1). As an example, if _ 5609 4923 0 4793 and0.2794, respectively. The cor-
the mobile is surrounded by many scatterers, several pmpap@s'ponding standard deviations are659,0.1334,0.2210 and

tion paths (each with its own amplitude and phase) do exigt g, |eading to fluctuations o29.11 %, 27.10 %, 46.11 %
between the narrowband source and th#éh antenna. For a ' ’ ’
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model for the lengthX vector channel sequence defined in (5):
21l ] we leth[k] = pu[k], where
: p ~ U ([0, A]) ()
’r ' ‘ 1 denotes a random variable uniformly distributed over the inter-
L5l ‘ . val [0, 4], whereA > 0 denotes some fixed constant; the se-
quence{u[1],u[2],...,u[K]} is statistically independent gf
or 1 and is taken as a first-order Markov process on the unit-sphere.
Lesf ] More specifically, letv[k] = (Reu[k]” Im u[k-]T)T. Notice
] that each2 M -dimensional vectoo[k] lies inS 2 ~1. Here, and
b for further reference§" ! = {v € R" : ||v|| = 1} denotes the

o 0s o s ok oe (n — 1)-dimensional unit-sphere of the Euclidean spate We
o let v[1] be uniformly distributed over the sphe§é™ —, written

Fig. 2. Realization op(t) (example) [1] ~ U (S2M*1) ®)
v ~ )

and let the one-step transition probability be given by

olk]| [k — 1] ~ Moy (w[k — 1], ). 9

08

Reus (t)

06

041

Here, M, (i, x) denotes the von Mises-Fisher distribution
on SP~! with the unit-norm vectop as mean direction and the
non-negative scalat as the concentration parameter, see [7].
The density of the von Mises-Fisher distributiti,, (1, ) with
respect to the uniform distribution on the unit-sphere is

f(v) = ap(k) exp (n uTv) , (10)

: : : : : : : wherev € SP~! anda, (k) denotes the normalizing constant.

° o el oas 020 03 03 0% 09 This distribution reduces to the uniform distribution on the unit-
sphere forx = 0, and exhibits a mode gt for k > 0.

As k increases, the probability mass becomes more concen-
trated around the mean directipn As an example, we plot

and66.02 %, respectively. From these data, we can conclud® figures 4 and 5, the density of the von Mises-Fisher dis-
that the time variation of the channel vectoft) over the re- 1Pution M, (u, k) on the C|rTcIe £ = 2) with mean direc-
stricted intervall0, N is mainly due to the time variation of tion p = (cos(w/4),sin(7/4))" and concentration parameters
the phase in eachith entry ofh(t), i.e, the net effect of the x = 0.5 andx = 5, respectively. Some remarks are in order
time variation of the phase of the fading channgl(t) and the
phase driftd,,, (t), which u(t) preserves up to a multiplicative
factor. The channel amplitudgt) is nearly constant over the
time interval considered. This asymmetric behaviop@) and

u(t) becomes more noticeable if more statistically independent
antennas are employed at the receiver (spatial diversity), or if
a Rice channel model is considered, as both of these scenar-
ios tend to stabilize the amplitude of the channel vector. For
example, as it is well-known, the Ricean fading channel ap-
proaches the classical non-fading (constant amplitude) AWGN
channel as the Rician factor tends to infinity. The fact that
the amplitudep(t) = ||h(¢)|] of the source spatial signature
varies slower, for small time intervals, than the “phase” vector
u(t) = h(t)/||h(t)| is in agreement with experimental mea-
surements (e.g., see [6]), and generalizes the typical behavierg. 4. Density ofMs (p, k) : g = (cos(w/4),sin(w/4))T andk = 0.5

of single-channel systems: notice that, faf = 1 channel

given byh(t) = A(t)el*®), we havep(t) = A(t) > 0, and regarding our channel statistical modé). It is a 1-parameter
the vectoru(t) specializes to the pure (unit-amplitude) phasamodel (with parametet) that does not rely on any special as-
u(t) = /%) where¢(t) accounts for the joint time variation sumption about the scattering environment, antenna directivity
of the phase of the fading channel and carrier phase drift. Mopattern, etc. Its main purpose is to be able of reproducing the
vated by this behavior of the time dynamics of the channel vetypical time variation of the channel vecth(t) over small ob-

tor h(t) over short time intervals, characteristic of many fadingervation intervals, which occurs in many flat-fading propaga-
scenarios, we work in the sequel with the following statisticdlon scenarios. Of course, if an alternative, more sophisticated

021

-0.2-

—04b

—06f

—08[F

Fig. 3. Realization of«(t) (example)
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I1l. MAP CHANNEL AND SYMBOL ESTIMATORS
The MAP estimates of the unknown channel random param-
etersp, V. = [v[1]v[2] - -- v[K]] and the source sequence of

7 bits b = (b[1],b[2],...,b[N])" correspond to the global solu-
, ' tions of the optimization problem

(ﬁ,V,B) = argmax p(p,V,b| X). (12)
p,V,b

Recall from (3) thatX denotes the matrix of observations.

In (12), we have the explicit constraifis< p < A (recall the

prior on the amplitude of the vector channel in (T[k]|| = 1
fork=1,2,...,K andb[n] € {£1} forn =1,2,...,N. We

Fig. 5. Density ofMy (2, &) : pu = (cos(m/4),sin(r/4))T andk = 5 are assuming that both the noise varianéeand the concen-
tration paramete are known. In fact, only their produet?x
needs to be assumed known (see (14) below). Using the Bayes

channel model (perhaps based on field measurements) may#§§ @nd our statistical assumptions — see (6), (7), (8), (9), (10)

trusted, it should be employed. In sum, we are trading simplici?;j (11) — we have, after some trivial algebraic manipulations,

(only one parameter to tune) and robustness (no special propi eduivalent optimization problem

gation scenario is assumed) for accuragy. The assumption RPN .

that the vector channel amplitude is constdiit[k]|| = p, is (p,V,b) = argmin ¢ (p,V,b) (13)
taken here because we work only with small data bursts. How- pV,b

ever, it should be said that the constant amplitude assumptigRere

is mainly taken for simplicity: for example, it can be seen that

the inclusion of independent fading amplitudes per each data oo K o2k &

sample is easily accommodated in our SDP framework to $é?> V', b) :Pz—g Zpyb[k]TU[k]_ﬁ > vk v[k-1],
presented in the next section (see also [8]). The distribution k=1 k=2

. > L7 : (14)
p ~ U(]0, A]) acts as a non-informative prior, reflecting our, . '

ignorance about the initial channel staiig. Under certain spe- and the sequenag k] is defined by

cial circumstances, some models for the phase variation of the b[n] Rez[nP + p|

mth multipath channeh,,(t) can be devised. For example, Yp[nP +p| = [ bn] I[P + p] } (15)

in the case of perfect transmitter and receiver oscillators and a
propagation scenario with a dominant direct LOS componeftr p = 0,1,...,P — 1 andn = 1,2,...,N. Notice that
with weaker (negligible) indirect components, the phase varithe sequencey,[k] depends on the sequence of blts =
tion can be approximated by a linear dynamic, the well-know[1], 2], .. .,b5[N])” as equation (15) shows (hence, the sub-
Doppler effect due to vehicle motion. However, since we do ngtriptb in the notationy, [k]).
rely on any specific propagation scenario nor oscillator asyn-The optimization problemin (13) is posed in terms of discrete
chronism model, this viewpoint is not taken here. Instead, W®) and continuous/, V') variables. It may be solved by enu-
let the phase vary randomly from data sample to data sampigerating all bit sequences of lengthand, for each one, say
with the concentration parametercontrolling the amount of optimize overp andV to yield the corresponding estimates
“randomness” per transition: larger valuessotorrespond to andVy,
slower time-varying phases, whereas smaller values oln (pp, V) = argmin ¢ (p,V,b). (16)
model fast-changing phase processes. Again, the uniform den- o,V
sity assumptions[1] ~ ¢/ (S*¥~1) about the initial direction , . , . R .
; . o In fact, since there is an unavoidable sign ambiguity in the vari-
vector is adopted to reflect our ignorance about the initial vectg
. . lesV' andb, because) (p, V,b) = ¢ (p,—V,—b), we may
channel state. As afinal remark, one could complicate the mogel =, . AP
S . X a bit, e.g.,b[1] = —1, and enumerate over &V ~! bit se-
and allow for distinct concentration parameters per vector chan- . T
: ; . uencegb|[2], ..., b[IN]} solving, for each one, the optimization
nel entry, or for a time-varying concentration parameter, or botH. . )
. oblem in (16). The MAP estimates of the channel and source
These and other model refinements are explored elsewhere [rg(l N

i ) i . alizations in (12) are then given By= ps, V = V; and
Regarding the transmitter model, we consider that the mfot;r—: b, whereb denotes the sequence minimiziadps, Vs, b)
mation source emits a string[n]} of independent and identi- ’ g

llv distributed bols d ; fini dulati Ioh over all bit sequences considered. This approach may be im-
cally distributed symbols drawn from a finite modulation alp "“plemented through a bank ef¥—! parallel processors, which

l(Jlngl):(()jri Si!cr;]lps“(;::?/c,:e\l;/i atsr;s;rgemhb(zr;jg?;?ebt:fg'fsgrf; I:EZI g feasible for small sequence lengtNs(as we are assuming
1 19 d . b t))ll ) throughout the paper). Each processor solves problem (16) for a
set{-1,1} and are equiprobable: fixed sequence of bitls. Hereafter, we treat the vectbi(hence,
yp[k]) as a constant, and focus on the prototype optimization
1 roblem in (16) with constraint8 < p < A and|jv[k]|| = 1
P ——11=P =11 =-. 11) P <p<
{bln] } {bln] } 2 (11) fork = 1,2,..., K. This is a highly nonlinear problem with
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no apparent closed-form solution. It can be tackled by generaito the positive semidefinite constraigt > 0, yielding the
purpose iterative algorithms for constrained problems describseimidefinite program
in the standard references of optimization theory, e.g., see [9].

These iterative procedures are usually only locally-convergent. min tr(I'Z). (20)
Thus, several time consuming re-initializations might be re- Z -0

quired to find the global solution. Here, we pursue a distinct Zokmt12KM41 < A

approach. We exploit the special structure of the constraints to {r(2zy) =1}

t Z denote the solution of (20). We obtain an approxima-

particular class of convex optimization problems has been un idn for p» and Vi = [vs[1] --- vs[K]] in (16) by letting

intense investigation over the past few years. It contains linear’ A ando (k] — R K
(and quadratic) programs as special cases, and admits glob8fly~ V £ KM+1.kM+1 andvp[k] = zi/|lzk] k = 1,.. ., K,

convergent efficient algorithms based on iterating interior poin\f% erez denqtes the M -dimensional subvector of the last col-
?::mn of Z ranging from rowsy, to 8. These choices fgr, and

relax problem (16) into a nearby semidefinite program. Tthe

which either follow central paths or reduce a potential functior]. .

Moreover, SDP finds applications in combinatorial optimizatiof) ° %re gxaf:t itz hashrankl, ss se}en f_rogl"n th_e last ﬁolumn;f
(providing polynomial-time bounds for NP-hard problems) [10] eenlceeir':;ltgomm(t%ti-gn;r(l:l:)rr% (Iaé:it Vacg?] bzsr:? diig d ﬁDz ( r?))>;—
[11], systems and control theory [12], eigenvalue optimizatio.'ﬂ ting the tirr?e variation of Et)he cziannel direction veg:[carpp
problems [13], etc. In the sequel, we assume that the reade@'é‘_ [%[1] v[2] --- v[K]] with a piecewise constant vecto: se-
familiar with optimization theory and, in particular, semidefi- ue_nce For example assumiP(pis oven and taking constant
nite programming theory. Survey papers can be found in [1 mer;ts of len tlg - 2 Wouldglead to the aram%terization
[10]. Several SDP resources (reviews, bibliography, softwal g_ [w[l]w[l]g[Q] ;[2] w[K/2]w[K/2]F]) in which we
packages) are available from Christoph Helmberg’s homepal r?ly let the channel direction[k] change eveny, = 2 data

http://  2i b. de/ hel mber g/ semi def . ht m . We samples. With this approach, the number of variables is halved.

obtain the SDP relaxation of problem (16) by relaxing a raank_ghe general case of constant segments of leAdiif a multiple
nstraint th rs in one of i ivalent formulation .
constraint that appears in one of its equivalent formulatio FL) leads to the reduced-size SDP

This relaxation technique is usually employed in the context 8

(0, 1)-integer optimization [11]. In our case, we start by rewrit- . =~
ing the primal problem (16) witly fixed and variableg and %mn tr (PZ) ’ (1)
o[l],...,v[K]as _ z0 ,
ZzKM/L+lfKM/L+1 <A
tr{Z,) =1
min [ o7 p]I‘|:U:|, (17) fr(Z:) = 1)
2 S A2 p

whereT = Q'TQ, Q being the diagonal concatenation of
Ig/ ® 1 ® Iy with 1. Notice that the variabléZ to be

wherev = veq'V'). Here, and for further reference, vec denotegptimized in (20) has sizZ@KM +1) x (2K M + 1), whereas

the vectorization operator: for an arbitraryx m rectangular " (21) the variableZ ha; siz2KM/L+1) X (2KM/L+1).
matrix A = [a1 a3 - -- a,, ], we have thevm-dimensional col- Let Z denote the solution of21). We obtainp, andwl[k] as

p
{v[k]"v[k] =1}

umn vector vegA) = (a{,ag’,...,ag)T. In (17), before: p, = \/ZZKM/LH,QKM/LH andw(k] = zi/ |zl
fork = 1,...,K/L, wherez;, denotes theM-dimensional
r= { 1; Y } subvector of the last column & ranging from rowsy;, to 3;.
Y 1 In [8], we study in more detail the performance of this piece-

wise constant model for the time variation of the channel vector
direction. Moreover, we derive a low-cost computational itera-
tive scheme, based on differential-geometric concepts, to refine
these sub-optimum estimates.

where y = VeC(—% [Yu[l]yp[2] - yb[K]])’ T =
—(0%k)/(4K) R ® Isp, and R is a K x K matrix with 1's
in the first upper and lower main diagonals drisl elsewhere.
We can reformulate (17) as

IV. COMPUTER SIMULATIONS

min tr('Z), (18) ) )
P { v } o ] We conducted computer simulations to analyse the perfor-
P mance of our proposed MAP estimator. We considergfi & 1
Zrgmt12k M1 < A” antenna receiver. We assumed an oversampling faciBr-ef3
{r(zy) =1} and processV = 4 consecutive bits. Thus, the data packet

. o length isK = PN = 12. Each data packet is generated ac-
where tr denotes the trace operatdy,; is the(i, j)th entry of ., ing to our channel and source priors. We have fixed the
the matrixZ, andZ , (for k = 1,2, ..., K) stands for th@ M x yector channel amplitude throughout the simulatigns; 1 (ig-
2M submatrix ofZ obtained by retaining the rows and columng, e at the receiver) and considered as von Mises-Fisher con-

ranging fromay, = (k —1)2M + 110 f = 2kM. The SDP cenyration parameters= 5, 10, 15, 20, 25. For each, we var-

relaxation of (18) consists in relaxing the rahkonstraint ied the signal-to-noise ratio (SNR) from SNR = —5 dB to
T SNRy,ax = 20 dB in steps ofA = 2.5 dB. The SNR is defined
z=|" [T ]= v PY (19) 2 2 2
) p bl 2 as SNR= E{||h[~]b[-]|| }/E{Hw[-]n } = 2/0”. For each
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SNR, 2000 statistically independent Monte-Carlos runs were

performed. Each Monte-Carlo run involves detecting the trans-
mitted bitsb and estimating the channel realizatipnV" with

our MAP receiver. Figure 6 shows the bit error rates (BER) ob-
tained for eachk over the considered range of SNRs. Results
beyond SNR= 7.5 dB are not shown because they are not sta-
tistically significant (more Monte-Carlo runs are required). In

SNR (dB)

Fig. 8. Mean phase error (degrees) versus SNR

V. CONCLUSIONS

1 We addressed the problem of joint source symbol detection
and multi-channel estimation in the context of flat-fading wire-
, , less communications. We rely on a simple vector channel model
10 ‘ ‘ : : ‘ ‘ which captures its typical behavior in many idealized flat-fading
SNR (@8) propagation scenarios. We decouple the time dynamics of the
amplitude and direction of the multi-channel vector over short
time intervals. We let the amplitude remain constant and model
the time variation of the channel direction as a Markov process
figure 7, we plot the mean of the estimateersus SNR. As can on the unit-sphere. We implemented (sub-optimally) the MAP
be seen, the estimate converges to the true valgel, as the estimators of the emitted symbol sequence and channel realiza-

SNR tends to infinity. Suppose the sequence of bits is knowtign. We exploited the special structure of the MAP optimiza-
tion problem, and found a nearby SDP reformulation which can

be efficiently solved by recently developed interior-point algo-
rithms. Preliminary results assessed the ability of our method in
acquiring fast-changing channels.

Fig. 6. Bit error rate (BER) versus signal-to-noise ratio (SNR)
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