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Abstract—We address the problem of joint source symbol detection and
multi-channel estimation in time-selective digital communication scenarios.
Our approach is based on a statistical model which decouples the time dy-
namics of the multi-channel vector in amplitude and direction. We com-
pute the most probable emitted symbol sequence and channel realization
for this statistical model, given the set of array observations. Our maxi-
mum a posterior (MAP) receiver consists of a bank of parallel processors.
Each processor finds the most probable channel realization for a given sym-
bol sequence via a relaxed semidefinite programming (SDP) re-formulation
of the original estimation problem. Computer simulations are included to
assess the capability of our technique in acquiring fast-changing flat-fading
channels.

I. PROBLEM FORMULATION

�
ONSIDER a wireless communication scenario in which a
multiple antenna receiver observes a mobile digital source,

as depicted in figure 1. The source transmits the bandpass com-
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Fig. 1. Flat-fading multi-link channel with a mobile source (baseband model)

plex signal���� � ����	������, where
� denotes the frequency
of the complex sinusoidal carrier. The baseband information-
bearing signal is given by���� �

���
���� ���� � ��� �� �

where���� denotes the�th emitted information symbol,� is
the symbol period and���� is a unit amplitude rectangular shap-
ing pulse of duration� seconds. We assume a flat-fading chan-
nel between the source and each one of the receiving anten-
nas,i.e., the maximum delay spread of the multipath channel
linking the source to each spatial sensor is a small fraction of
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the symbol period� (narrowband source assumption). Assum-
ing that the�th receiver is time-synchronized to the transmitted
signal, the complex bandpass signal picked by the�th antenna
is ����� � �����	������ where����� � ����� ���� � �����
stands for its baseband equivalent. Here,

����� � �����	�	���� (1)

denotes the net baseband gain,����� is the complex-valued
fading channel,����� models carrier phase drifts between
the source and the�th spatial sensor, and����� stands for
zero-mean complex additive white Gaussian noise (AWGN)
with power spectral density (PSD)��� Watts/Hz, that is,
E����������� ���� � ���Æ���. Let the lowpass signal
�����, which is available at the receiver after����� is demod-
ulated to baseband, be oversampled by an integrate-and-dump
(I&D) circuit yielding the discrete-time sequence

�������� �
�

	

� �
�������

�
���

����� ��� � � 
� �� � � � � ����

where the integer� � ��	 � � denotes the number of data
samples taken in each symbol period. Assuming that����� is
constant during the interval of integration, we have

����� � �� � ����� � �� ���� � ����� � ��� (2)

where����� � �� � �� ��� � �	� and
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Let � be the number of successive symbol intervals thus
recorded by the receiver, starting at� � � for convenience of
notation. Letting� � �� � � denote the time-index in (2),
stacking the data sequences����� into the complex vector
���� � ������� ������ � � � � �� ����


 , and collecting the vectors
����, � � �� �� � � � �� � �� into the data matrix

� �
�
���� ���� � � � ����

�
� (3)

yields the matricial data model

� �� diag��� �� � �� � (4)

Here,
� �

�
���� ���� � � � ����

�
(5)

denotes the sequence of vector channel realizations,���� �
������� ������ � � � � �� ����


 , � � ������ ����� � � � � ��� ��

 denotes

the transmitted sequence of� information symbols, and� �
��������� � � � ���� � represents the noise matrix,���� �
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������� ������ � � � � �� ����
 . We assume that the additive noise
processes are spatially white,

E
�
������� � ��

	
�

��

�
��Æ���� (6)

where �� � ����	, ���
 denotes the Hermitean operator

(transpose conjugate) andÆ��� stands for the discrete-time Kro-
necker signal (Æ�
� � � andÆ��� � 
 for � �� 
). For a generic
vector	 � ���� ��� � � � � ���


 , diag�	� denotes the diagonal ma-
trix with ��� ��� � � � � �� as its main diagonal entries. The symbol
� stands for the Kronecker product and, for an integer�, � � is
the��� identity matrix and�� � ��� �� � � � � ��
 represents the
�-dimensional column vector with all entries equal to�.

In this paper, we address the problem of jointly detecting the
emitted information sequence� and estimating the channel ma-
trix � from the available data matrix�, see (4). We work
under a Bayesian framework. Moreover, we assume that only
small data bursts are available for processing, say, with length
� 	 � symbols. This precludes the usage of�nd order statistics
methods [1], [2]. We assign probabilistic priors to both ran-
dom objects� (channel) and� (source), and present a sub-
optimum implementation of their corresponding maximum-a-
posteriori (MAP) estimators. Our paper is organized as fol-
lows. In section II, we describe and motivate the priors on
the channel and source. We decouple the time dynamics of the
channel vector���� in amplitude���� � 
����
 and direction

��� � ����� 
����
. Separate priors are then assigned to the
stochastic sequences������ and�
����. For simplicity, we re-
strict ourselves in this paper to a constant fading envelope,i.e.,
we assume that���� � � for � � �� �� � � � ��, where� denotes a
random variable uniformly distributed in an interval�
� ��. The
stochastic sequence�
���� is modeled as a first-order Markov
process on the unit-sphere. The conditional transition proba-
bility of 
��� �
�� � �� is a von Mises-Fisher distribution with
mean (or mode)
�� � �� and concentration parameter�. This
�-parameter (�) model permits to capture the characteristics of
several fast flat-fading digital communication channels. In sec-
tion III, we discuss a sub-optimum implementation of the MAP
estimators of� and� for the given probabilistic prior. We show
how the optimization problem underlying the MAP estimation
of �, for a fixed data sequence�, can be approximated by a
semidefinite program (SDP). This class of convex programs,
which extend linear and quadratic programming, has attracted
much attention from the optimization community in the past
recent years, leading to the development of powerful primal-
dual interior-point solvers. These algorithms can find the global
minimum of SDPs with polynomial worst-case complexity and
exhibit very good performance in practice. In section IV, we
present some computer simulations to assess the performance of
our MAP estimator in acquiring fast flat-fading multichannels.
Section V concludes our paper.

II. CHANNEL AND SOURCE PROBABILISTIC PRIORS

For certain idealized radio propagation environments, it is
possible to deduce analytically some simplified statistical mod-
els for the fading channel����� in (1). As an example, if
the mobile is surrounded by many scatterers, several propaga-
tion paths (each with its own amplitude and phase) do exist
between the narrowband source and the�th antenna. For a

large number of these discrete propagation paths, it is plausi-
ble to invoke the central limit theorem and model the complex
gain ����� as a wide-sense stationary (WSS) complex circular
Gaussian process [3], [4], [5]. Moreover,����� can be taken
as zero-mean (Rayleigh fading model) if there is no direct line-
of-sight (LOS) component, whereas a nonzero mean must be
included if a direct specular component is present (Rice fading
model). Besides the Rayleigh/Rice distribution, other first-order
statistics modeling the envelope of the complex-valued fading
channel,�������, have been considered in the literature, e.g.,
the Nakagami-q (Hoyt), the Nakagami-n, and the Nakagami-
m models, see [4] and the references therein. The autocorre-
lation function of the WSS Gaussian process�����, ����� �
E
�
������� ��� ��

�
	

, dictating the second-order statistics of
the fading channel, can be obtained for some specific scattering
propagation configurations from Doppler-shift motion-induced
physical considerations. For example, the assumption of an ide-
alized isotropic scattering scenario (the mobile is surrounded
by a cluster of scatterers uniformly distributed in angle), an
uniform azimuthal power gain for the�th receiving antenna
(omnidirectional sensor), and a constant vehicle speed, leads
to the Clarke’s model [5] with the fading autocorrelation given

by ����� � ��� � ��!
���. Here,��� � E


�������

�
�

de-

notes the power of the fading process, ���� is the zero-order
Bessel function of the first kind,
� � ��
��� is the maximum
Doppler frequency in Hz,�� is the speed of the mobile source
relative to the�th antenna in m/s,
� stands for the central fre-
quency of the transmitted signal in Hz, and� � � � �
	 m/s
denotes the speed of light. Clarke’s model is employed in land
mobile scenarios [4]. Other fading autocorrelation models are
available for distinct propagation scenarios, see [4]. The phase
drift ����� in (1) models non-channel induced phase shifts be-
tween the transmitter and the�th receiver, e.g., transmitter and
local oscillator asynchronism. As an illustrative example, con-
sider an � � antenna array receiver which observes a digital
source with symbol period� � 
�� ms and carrier frequency

� � � GHz. We assume that the vehicle moves with a speed of
� � ��
 Km/h. As the fading channel model, we take����� and
����� as zero-mean unit-power statistically independent com-
plex Gaussian processes, each with autocorrelation function pre-
dicted by Clarke’s model. Moreover, we assume that the crys-
tal oscillator at the receiver has a stability of" � 
� ppm
(part per million),i.e., we let ����� � �!
	�, where the os-
cillator frequency error
	 � "
� � 

 Hz, for � � �� �.
Let ���� � ����
��� denote the decomposition of the chan-
nel vector���� in amplitude���� � 
����
 � 
 and direction

��� � ����� 
����
 � �#����� #�����


 . In figures 2 and 3, we
see a realization of����, through its components���� and
���,
over a time span of� � � symbol periods. We have taken�

equi-spaced time samples of���� and
��� in the observation pe-
riod �
� �� �, and computed some statistics. For this realization,
the mean value of the channel amplitude is� � ������ with
a standard deviation of�� � 
�
�
�. Thus, the envelope ex-
hibits a fluctuation of���� � ��� � about its nominal value�.
The mean values of Re#�����Re#����� Im#����� Im#���� are
�
����� 
�������
����� and
�����, respectively. The cor-
responding standard deviations are
����� 
������ 
����
 and

����, leading to fluctuations of����� �� ����
 �� ����� �
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Fig. 2. Realization of���� (example)
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Fig. 3. Realization of���� (example)

and���
� �, respectively. From these data, we can conclude
that the time variation of the channel vector���� over the re-
stricted interval�
� �� � is mainly due to the time variation of
the phase in each�th entry of����, i.e., the net effect of the
time variation of the phase of the fading channel����� and the
phase drift�����, which
��� preserves up to a multiplicative
factor. The channel amplitude���� is nearly constant over the
time interval considered. This asymmetric behavior of���� and

��� becomes more noticeable if more statistically independent
antennas are employed at the receiver (spatial diversity), or if
a Rice channel model is considered, as both of these scenar-
ios tend to stabilize the amplitude of the channel vector. For
example, as it is well-known, the Ricean fading channel ap-
proaches the classical non-fading (constant amplitude) AWGN
channel as the Rician factor tends to infinity. The fact that
the amplitude���� � 
����
 of the source spatial signature
varies slower, for small time intervals, than the “phase” vector

��� � ����� 
����
 is in agreement with experimental mea-
surements (e.g., see [6]), and generalizes the typical behavior
of single-channel systems: notice that, for � � channel
given by���� � ����	�����, we have���� � ���� � 
, and
the vector
��� specializes to the pure (unit-amplitude) phasor

��� � 	�����, where$��� accounts for the joint time variation
of the phase of the fading channel and carrier phase drift. Moti-
vated by this behavior of the time dynamics of the channel vec-
tor ���� over short time intervals, characteristic of many fading
scenarios, we work in the sequel with the following statistical

model for the length� vector channel sequence defined in (5):
we let���� � �
���, where

� �  ��
� ��� (7)

denotes a random variable uniformly distributed over the inter-
val �
� ��, where� % 
 denotes some fixed constant; the se-
quence�
����
���� � � � �
���� is statistically independent of�
and is taken as a first-order Markov process on the unit-sphere.

More specifically, let	��� �
�
Re
���
 Im
���




. Notice

that each� -dimensional vector	��� lies in�����. Here, and
for further reference,���� � �	 � �� � 
	
 � �� denotes the
�����-dimensional unit-sphere of the Euclidean space�� . We
let 	��� be uniformly distributed over the sphere�����, written

	��� � 
�
�
����


� (8)

and let the one-step transition probability be given by

	��� �	�� � �� ���� �	�� � ��� �� � (9)

Here, �� ��� �� denotes the von Mises-Fisher distribution
on���� with the unit-norm vector� as mean direction and the
non-negative scalar� as the concentration parameter, see [7].
The density of the von Mises-Fisher distribution�� ��� ��with
respect to the uniform distribution on the unit-sphere is


 �	� � &���� ���
�
��
	


� (10)

where	 � ���� and&���� denotes the normalizing constant.
This distribution reduces to the uniform distribution on the unit-
sphere for� � 
, and exhibits a mode at� for � % 
.
As � increases, the probability mass becomes more concen-
trated around the mean direction�. As an example, we plot
in figures 4 and 5, the density of the von Mises-Fisher dis-
tribution �� ��� �� on the circle (� � �) with mean direc-
tion � � �����!���� ����!����


 and concentration parameters
� � 
� and� � , respectively. Some remarks are in order
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Fig. 4. Density of�� ��� �� � � � ���������� �	
������� and� � ���

regarding our channel statistical model.i) It is a �-parameter
model (with parameter�) that does not rely on any special as-
sumption about the scattering environment, antenna directivity
pattern, etc. Its main purpose is to be able of reproducing the
typical time variation of the channel vector���� over small ob-
servation intervals, which occurs in many flat-fading propaga-
tion scenarios. Of course, if an alternative, more sophisticated



International Telecommunications Symposium – ITS2002, Natal, Brazil

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1
0

1

2

3

4

5

6

7

Fig. 5. Density of�� ��� �� � � � ���������� �	
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channel model (perhaps based on field measurements) may be
trusted, it should be employed. In sum, we are trading simplicity
(only one parameter to tune) and robustness (no special propa-
gation scenario is assumed) for accuracy.ii) The assumption
that the vector channel amplitude is constant,
����
 � �, is
taken here because we work only with small data bursts. How-
ever, it should be said that the constant amplitude assumption
is mainly taken for simplicity: for example, it can be seen that
the inclusion of independent fading amplitudes per each data
sample is easily accommodated in our SDP framework to be
presented in the next section (see also [8]). The distribution
� �  ��
� ��� acts as a non-informative prior, reflecting our
ignorance about the initial channel state.iii) Under certain spe-
cial circumstances, some models for the phase variation of the
�th multipath channel����� can be devised. For example,
in the case of perfect transmitter and receiver oscillators and a
propagation scenario with a dominant direct LOS component
with weaker (negligible) indirect components, the phase varia-
tion can be approximated by a linear dynamic, the well-known
Doppler effect due to vehicle motion. However, since we do not
rely on any specific propagation scenario nor oscillator asyn-
chronism model, this viewpoint is not taken here. Instead, we
let the phase vary randomly from data sample to data sample,
with the concentration parameter� controlling the amount of
“randomness” per transition: larger values of� correspond to
slower time-varying phases, whereas smaller values of� can
model fast-changing phase processes. Again, the uniform den-
sity assumption	��� � 

�
�����


about the initial direction

vector is adopted to reflect our ignorance about the initial vector
channel state. As a final remark, one could complicate the model
and allow for distinct concentration parameters per vector chan-
nel entry, or for a time-varying concentration parameter, or both.
These and other model refinements are explored elsewhere [8].

Regarding the transmitter model, we consider that the infor-
mation source emits a string������ of independent and identi-
cally distributed symbols drawn from a finite modulation alpha-
bet. For simplicity, we assume hereafter a binary-shift keying
(BSK) digital source,i.e., the symbols���� are taken from the
set���� �� and are equiprobable:

Pr����� � ��� � Pr����� � �� �
�

�
� (11)

III. MAP C HANNEL AND SYMBOL ESTIMATORS

The MAP estimates of the unknown channel random param-
eters�, � � �	���	��� � � � 	��� � and the source sequence of
bits � � ������ ����� � � � � ��� ��


 correspond to the global solu-
tions of the optimization problem���� �� ���� � ������

��� ��

� ���� � � ��� � (12)

Recall from (3) that� denotes the matrix of observations.
In (12), we have the explicit constraints
 � � � � (recall the
prior on the amplitude of the vector channel in (7)),
	���
 � �
for � � �� �� � � � �� and���� � ���� for � � �� �� � � � � � . We
are assuming that both the noise variance� � and the concen-
tration parameter� are known. In fact, only their product� ��
needs to be assumed known (see (14) below). Using the Bayes
rule and our statistical assumptions – see (6), (7), (8), (9), (10)
and (11) – we have, after some trivial algebraic manipulations,
the equivalent optimization problem���� �� ���� � ������

��� � �

' ���� � �� (13)

where

' ���� � �� ����
�

�

��
���

�����

	����

���

��

��
���

	���
	������

(14)
and the sequence���� is defined by

���� � �� �

�
����Re���� � ��
���� Im���� � ��

�
(15)

for � � 
� �� � � � � � � � and � � �� �� � � � � � . Notice that
the sequence���� depends on the sequence of bits� �

������ ����� � � � � ��� ��

 as equation (15) shows (hence, the sub-

script� in the notation
�
���).

The optimization problem in (13) is posed in terms of discrete
(�) and continuous (��� ) variables. It may be solved by enu-
merating all bit sequences of length� and, for each one, say�,
optimize over� and� to yield the corresponding estimates��
and� �,

����� �� � ������
���

' ���� � �� � (16)

In fact, since there is an unavoidable sign ambiguity in the vari-
ables� and�, because' ���� � �� � ' ����� ����, we may
fix a bit, e.g.,���� � ��, and enumerate over all���� bit se-
quences������ � � � � ��� �� solving, for each one, the optimization
problem in (16). The MAP estimates of the channel and source
realizations in (12) are then given by�� � ��, �� � � � and�� � �, where� denotes the sequence minimizing' ����� �� ��
over all bit sequences considered. This approach may be im-
plemented through a bank of���� parallel processors, which
is feasible for small sequence lengths� (as we are assuming
throughout the paper). Each processor solves problem (16) for a
fixed sequence of bits�. Hereafter, we treat the vector� (hence,
����) as a constant, and focus on the prototype optimization
problem in (16) with constraints
 � � � � and
	���
 � �
for � � �� �� � � � ��. This is a highly nonlinear problem with
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no apparent closed-form solution. It can be tackled by general-
purpose iterative algorithms for constrained problems described
in the standard references of optimization theory, e.g., see [9].
These iterative procedures are usually only locally-convergent.
Thus, several time consuming re-initializations might be re-
quired to find the global solution. Here, we pursue a distinct
approach. We exploit the special structure of the constraints to
relax problem (16) into a nearby semidefinite program. This
particular class of convex optimization problems has been under
intense investigation over the past few years. It contains linear
(and quadratic) programs as special cases, and admits globally
convergent efficient algorithms based on iterating interior points
which either follow central paths or reduce a potential function.
Moreover, SDP finds applications in combinatorial optimization
(providing polynomial-time bounds for NP-hard problems) [10],
[11], systems and control theory [12], eigenvalue optimization
problems [13], etc. In the sequel, we assume that the reader is
familiar with optimization theory and, in particular, semidefi-
nite programming theory. Survey papers can be found in [14],
[10]. Several SDP resources (reviews, bibliography, software
packages) are available from Christoph Helmberg’s homepage
http://www.zib.de/helmberg/semidef.html. We
obtain the SDP relaxation of problem (16) by relaxing a rank�
constraint that appears in one of its equivalent formulations.
This relaxation technique is usually employed in the context of
�
� ��-integer optimization [11]. In our case, we start by rewrit-
ing the primal problem (16) with� fixed and variables� and
	���� � � � �	��� as

���
�� � ��

��	���	� � ��

�
	
 �

�
�

�
	

�

�
� (17)

where	 � vec�� �. Here, and for further reference, vec denotes
the vectorization operator: for an arbitrary� � � rectangular
matrix� � ��� �� � � � �� �, we have the��-dimensional col-

umn vector vec��� �
�
�
� ��



� � � � � ��



�



. In (17),

� �

�
� 


 �

�

where  � vec
�
� �
� �

�
���

�
��� � � � 

�
��� �


, � �

������������ � ��� , and� is a� � � matrix with �’s
in the first upper and lower main diagonals and
’s elsewhere.
We can reformulate (17) as

���

� �

�
�

�

� �
�� �

�
������������ � ��

�tr ���� � ��

tr ���� � (18)

where tr denotes the trace operator,� ��� is the�(� )�th entry of
the matrix�, and�� (for � � �� �� � � � ��) stands for the��
� submatrix of� obtained by retaining the rows and columns
ranging from&� � �� � ��� � � to *� � �� . The SDP
relaxation of (18) consists in relaxing the rank� constraint

� �

�
	

�

� �
	
 �

�
�

�
		
 �	
�	
 ��

�
(19)

into the positive semidefinite constraint� � �, yielding the
semidefinite program

���
� � �

������������ � ��

�tr ���� � ��

tr ���� � (20)

Let � denote the solution of (20). We obtain an approxima-
tion for �� and� � � �	���� � � � 	���� � in (16) by letting
�� �

�
���������� and	���� � ���
��
, � � �� � � � ��,

where�� denotes the� -dimensional subvector of the last col-
umn of� ranging from rows&� to*�. These choices for�� and
� � are exact if� has rank�, as seen from the last column of
the identity in (19). The number of variables in each SDP (20),
hence its computational complexity, can be reduced by approx-
imating the time variation of the channel direction vector,i.e.,
� � �	���	��� � � � 	��� � with a piecewise constant vector se-
quence. For example, assuming� is even and taking constant
segments of length+ � � would lead to the parameterization
� � ����������������� � � � ������������ �, in which we
only let the channel direction	��� change every+ � � data
samples. With this approach, the number of variables is halved.
The general case of constant segments of length+ (� a multiple
of +) leads to the reduced-size SDP

����� � ������������������ � ��

�tr
����� � ��

tr
������ � (21)

where �� � �


��, � being the diagonal concatenation of

���� � �� � ��� with �. Notice that the variable� to be
optimized in (20) has size��� � ��� ��� � ��, whereas
in (21) the variable�� has size����+���� ����+���.
Let �� denote the solution of����. We obtain�� and���� as

before: �� �
������������������ and���� � ���� 
���


for � � �� � � � ���+, where��� denotes the� -dimensional
subvector of the last column of�� ranging from rows&� to *�.
In [8], we study in more detail the performance of this piece-
wise constant model for the time variation of the channel vector
direction. Moreover, we derive a low-cost computational itera-
tive scheme, based on differential-geometric concepts, to refine
these sub-optimum estimates.

IV. COMPUTER SIMULATIONS

We conducted computer simulations to analyse the perfor-
mance of our proposed MAP estimator. We considered a � �
antenna receiver. We assumed an oversampling factor of� � �
and process� � � consecutive bits. Thus, the data packet
length is� � �� � ��. Each data packet is generated ac-
cording to our channel and source priors. We have fixed the
vector channel amplitude throughout the simulations,� � � (ig-
nored at the receiver) and considered as von Mises-Fisher con-
centration parameters� � � �
� �� �
� �. For each�, we var-
ied the signal-to-noise ratio (SNR) from SNR
�� � � dB to
SNR
� � �
 dB in steps of	 � �� dB. The SNR is defined

as SNR� E



��������


�
�
�E



����


�
�

� ����. For each
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SNR, �


 statistically independent Monte-Carlos runs were
performed. Each Monte-Carlo run involves detecting the trans-
mitted bits� and estimating the channel realization��� with
our MAP receiver. Figure 6 shows the bit error rates (BER) ob-
tained for each� over the considered range of SNRs. Results
beyond SNR� �� dB are not shown because they are not sta-
tistically significant (more Monte-Carlo runs are required). In
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Fig. 6. Bit error rate (BER) versus signal-to-noise ratio (SNR)

figure 7, we plot the mean of the estimate�� versus SNR. As can
be seen, the estimate converges to the true value� � �, as the
SNR tends to infinity. Suppose the sequence of bits is known,

−5 0 5 10 15 20
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SNR (dB)

� � 

� � �

Fig. 7. Estimated fading amplitude (��) versus SNR

and we only face the task of estimating the channel. That is, we
must solve (16) for a given (training) sequence of bits�. Since
 � �, each channel direction
��� is a point in the unit-radius
circle of the complex plane. In figure 8, we show the average
absolute phase error obtained by our estimator. Notice that with
our von Mises-Fisher channel model, the phase of the channel
has a mean jump of����� ���� ����,���� and�
�� degrees from

��� to 
�� � �� (separated in time by one third of the symbol
period), for� � � �
� �� �
 and�, respectively. Thus, we are
tackling a scenario with rapidly varying channel phase.
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Fig. 8. Mean phase error (degrees) versus SNR

V. CONCLUSIONS

We addressed the problem of joint source symbol detection
and multi-channel estimation in the context of flat-fading wire-
less communications. We rely on a simple vector channel model
which captures its typical behavior in many idealized flat-fading
propagation scenarios. We decouple the time dynamics of the
amplitude and direction of the multi-channel vector over short
time intervals. We let the amplitude remain constant and model
the time variation of the channel direction as a Markov process
on the unit-sphere. We implemented (sub-optimally) the MAP
estimators of the emitted symbol sequence and channel realiza-
tion. We exploited the special structure of the MAP optimiza-
tion problem, and found a nearby SDP reformulation which can
be efficiently solved by recently developed interior-point algo-
rithms. Preliminary results assessed the ability of our method in
acquiring fast-changing channels.
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