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Discovery protocols for SDN-based Wireless Sensor
Networks with unidirectional links
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Abstract— Ad hoc and wireless sensor networks routing proto-
cols are usually oblivious to the existence of unidirectional links.
We propose to use Software Defined Network to take advantage
of these links, instead of using the flooding-based or specific-
purpose protocols found in the literature. To achieve this goal, it is
necessary to devise Controller Discovery and Neighbor Discovery
protocols tailored for unidirectional networks. We designed and
implemented such algorithms and compared to the traditional
Collect-based approach. The results show that SDN is a promising
alternative to routing in unidirectional networks.

Keywords— Wireless sensor networks, Software defined net-
works, Unidirectional networks, Neighbor Discovery

I. INTRODUCTION

Wireless sensor networks (WSN) are a class of wireless
communication systems composed of resource constrained
devices in terms of processing speed, memory capacity, energy
availability, and communication bandwidth [1].

Some of the main applications are environment monitor-
ing and actuation, for example in smart building, precision
agriculture and smart cities [1]. In these applications, the
WSN devices are usually spread over a large area; therefore, a
routing protocol is required to provide end-to-end connectivity.
Since these networks are ad-hoc (i.e. not infrastructured), all
devices perform routing-related tasks.

Routing protocols design often assume that the physical
communication link between two devices is symmetric and
bidirectional, i.e. if device A is able to transmit data to
device B, device B is able to transmit data to A with same
characteristics such as delivery probability. Some examples are
AODV [2] and RPL [3].

However, some studies show that this assumption might not
be as reasonable as first thought [4], [5]. Many factors lead
to link asymmetries such as electromagnetic wave reflection,
diffraction and refraction, non-isotropic antennas and variation
in manufacturing process.

Routing protocol performance may degrade in the presence
of asymmetric links. In particular, performance could be
improved if a protocol is able to use unidirectional links. In
short, a communication link is said to be unidirectional if it is
possible to transmit information in only one direction, i.e. if
A can send data to B, but B is not able to directly contact A.

For example, MOLSR-ASYM [6] extends an existing al-
gorithm to detect unidirectional links. It is a link state rout-
ing, therefore node reachability information must be dissem-
inated throughout the whole network. Unidirectional Link
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Counter [7] uses flooding of route request and route reply
messages. It has two versions, the first uses an unspecified ND
algorithm, and the other uses flooding to detour unidirectional
links, the detour path length should be limited.

Another approach is to provide a bidirectional link abstrac-
tion at the MAC layer. BRA [8] hides the fact that there are
unidirectional links from the routing layer. The multihop re-
verse path of unidirectional links is calculated using a reversed
Bellman-Ford algorithm. Another work proposes a similar
MAC layer abstraction over a network with unidirectional
links, by finding reverse paths [9]. Probability-based routing
is used to take advantage of temporary links.

Kim et. al [10] studied the case of a main powered bases-
tation node able to transmit packets with high power to the
other nodes, and how to perform this transmission reliably.
This is a case-specific solution, and does not solve the general
unidirectional link problem.

Software Defined Network (SDN) is an alternative routing
paradigm, focused on network programmability. Typically, this
flexibility is achieved by the centralization of the control
plane, thus the routing decisions are made by a centralized
controller [11]. Routing rules are informed to the network
nodes by a southbound protocol. Specific SDN approaches
were proposed for WSN, such as [12], [13], [14].

Our hypothesis is that SDN is able to provide efficient
routing in the context of network with unidirectional links.
Since the controller has a centralized global view of network
links, it can calculate the best route from any source to any
destination without flooding the network.

Also, SDN allows flexibly changing routing criteria, since it
is altered only on the controller and no assumptions are made
about traffic pattern and node radio range.

Nonetheless, SDN needs two underlying protocols, namely
a Neighbor Discovery (ND) protocol and a Controller Discov-
ery (CD) protocol. The ND protocol obtains and maintains
node neighborhood information, while the CD protocol iden-
tifies a next hop candidate to reach the controller. To the best
of our knowledge, there is no suitable ND and CD protocols
to support SDN on WSNs with unidirectional links.

The main contribution of this work is the design, implemen-
tation and evaluation of simple ND/CD protocols tailored for
network with unidirectional links. We compare our solution
to a traditional ND/CD algorithm that assumes bidirectional
links, assessing the metrics of packet delivery, delay, control
overhead and time to controller discovery. Finally, we discuss
possibilities of enhancements to the simple algorithms, point-
ing towards future work.

The remaining of this paper is structured as follows:
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Section II contains related work, Section III describes our
ND and CD algorithms, Section IV contains the experiment
methodology, Section V presents the results and Section VI
presents final remarks from this paper.

II. RELATED WORK

In this section, we present previous work related to the use
of SDN in WSN.

Software defined networks first came up in the domain of
cabled networks, represented by the OpenFlow protocol [15].
It assumes that routing devices are different from the end
devices, what is not the case in ad hoc networks, in which
all end nodes should also route packets. The SDN controller
uses the information sent by devices to build a global network
view, which is the basis for the centralized route calculation.
The SDN controller sends control messages to configure the
forwarding table on the devices.

The first attempts to use SDN in WSN tried to adapt
OpenFlow [16], [17]. However, these works do not discuss
how to adapt the protocol to the underlying medium access
and physical layers, whose MTU and data rate are lower than
the expected by OpenFlow. Also, ND and CD protocols are
not mentioned.

Other noteworthy proposals are TinySDN [12], SDNWise
[13] and IT-SDN [14]. These protocols were implemented
and tested on networks based on IEEE 802.15.4 MAC layer,
and their code is available to download. We now compare
them in terms of southbound protocol, ND algorithm and CD
algorithm.

The southbound protocol is used to establish communication
between the SDN controllers and the network nodes, for exam-
ple to configure routing rules and to retrieve status information
from the nodes. All three protocols implements their own
southbound interface, although with similar functionality.

The nodes must inform their neighborhood to the controller,
so it can build a global network view. The nodes use an under-
lying neighbor discovery algorithm to gather this information.

TinySDN uses the Collection Tree Protocol [18] as its ND
and CD algorithm. It is already implemented in the target
operating system, TinyOS. This algorithm builds a tree rooted
at the controller. At first, the other nodes set their distance
to the controller as infinity, while the controller broadcasts
beacons advertising its existence. Controller neighbors calcu-
late the link status between them, calculating its “rank” using
expected transmission count (ETX) as the link quality metric.
This information in included in the periodic beacons. The tree
is built as each node chooses a parent with minimum rank. The
interval between beacons increases if the topology is stable.
Unidirectional links are ignored.

SDNWise implements a similar mechanism, but embedded
in the southbound protocol, instead of a separate protocol.

Controller discovery is necessary to allow the network to
be configured at bootstrap. Both TinySDN and SDNWise
perform this task combined with ND, using a tree rooted at
the controller. This approach has the downside of not allowing
to set a software defined route towards the controller.

IT-SDN has a different approach to ND and CD implemen-
tation, since it provides an interface to allow new protocols to

be added to the framework. The version available for download
also contains a collect-based protocol. However, we chose to
use IT-SDN due to the flexibility to change these protocols.

To the best of our knowledge, our work is the first to use
SDN to handle unidirectional links in WSN.

III. SIMPLE DISCOVERY ALGORITHMS

This section describes the algorithms proposed in this
research and implemented on IT-SDN to support unidirectional
links. Dismissing the bidirectional link assumption requires
new algorithms, since all that can be assumed from receiving
a message is an unidirectional link from the transmitter.

A. A simple Neighbor Discovery Algorithm

The controller is responsible for calculating routes, includ-
ing the reverse path of unidirectional links, therefore it is
possible to design a simple neighbor discovery able to detect
all incoming links of each node.

The algorithm consists in transmitting beacons containing
the source address at constant intervals. The beacon receiver
adds the packet source address to its neighbor table, and
trigger an event to send the neighborhood information to the
controller. Nodes set the beacon intervals according to their
own address to avoid beacon collision.

Figure 1 shows an execution example in a 3-node network
with unidirectional links. The rectangles represent the nodes
neighbor tables. First, node 1 transmits a beacon and node 2
registers it as neighbor. Next, node 2 transmits a beacon, fol-
lowed by node 3. The resulting neighbor tables are displayed
in the rightmost network snapshot.

Fig. 1: Simple ND example

The controller is able to build a global view of the network
with this information from the nodes. A node learns how to
relay the information to the controller using a CD algorithm.

B. A simple Controller Discovery Algorithm

The controller discovery algorithm is used to establish
a multihop path from every node in the network to the
controller. The route discovery by the CD algorithm may be
used throughout all network lifetime or it may be overwritten
once the controller is able to communicate with the nodes.

We use an approach similar to distance vector algorithms;
however, it was modified to deal with unidirectional link and
to find only the controller instead of every route to each other
node in the network. To the best of our knowledge, this is the
first algorithm with these characteristics.

Every node maintains a table with four columns: node,
next hop, controller distance and number of times the node
disseminated this information. An entry means that a certain
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node is able to reach the controller through the next hop within
controller distance hops.

At fixed periodic intervals, nodes broadcast a CD message
containing the table!, if there is at least one entry. If a row
has been transmitted a preset number of times, it is removed
from the table, thus it is not transmitted anymore.

Upon receiving a CD message, a node updates its table
with the new information, for example, if a node is able to
reach the controller in less hops. This information is added
to the node CD beacons and disseminated in the network. At
the beginning, each node sets its distance to the controller
as infinity. If the CD message contains the receiving node
address, it stores the next hop and the current distance to the
controller. Next, it informs the main SDN process about the
new controller route, updating the flow table.

The first CD message is sent by the controller after discov-
ering its first incoming neighbors (trough the ND algorithm).
Eventually, these nodes learn from CD messages that they are
able to reach the controller. Next, these nodes inform their
neighborhood information to the controller, which is used to
update the controller CD table.

Table I shows a simplified example of a simple 3-node fully
unidirectional topology, with the following links: Controller
(C) = node 2, node 2 = node 1, node 1 = C. In the first
round, the controller discovers that node 1 can reach it. This
information propagates to node 2 in round 2 and to node 1
in round 3. In round 4, the controller receives the neighbor
information from node 1 and calculates that node 2 can reach
it through node 1. Node 2 gets this information in round 5.
At this point, all nodes are able to communicate with the
controller.

TABLE I: CD algorithm example

Round Controller Node 1 Node 2
Node | Next hop | Node | Next hop | Node | Next hop
1 1 C
2 1 C 1 C
3 1 C 1 C 1 C
4 1 C 1 C 1 C
2 1
5 1 C 1 C 1 C
2 1 1

IV. EXPERIMENTS

This section describes our method to execute experiments
and the chosen scenarios to pursue the goal of comparing ND
and CD algorithms tailored for unidirectional network with
algorithms oblivious to this issue.

A. Method

We implemented the algorithms presented in Section III
on IT-SDN [14], since its design allows changing the ND
and CD algorithms easily. Its source code contains a custom
controller software, which we employed in the experiments.

Ithe number of times the node disseminated this information is not included
in the beacon message

The IT-SDN paper contains information about the southbound
protocol specification.

The available IT-SDN version relies on hop-by-hop ac-
knowledgements. Since this is not adequate for unidirectional
networks, we disabled this feature and implemented end-to-
end reliability.

We used COOJA [19], a WSN node emulator with in-
tegrated radio medium simulation. COOJA includes several
radio medium models, but DGRM (Directed Graph Radio
Medium) is most suitable for simulating unidirectional links.
This tool is useful to control the network topology, which is
hard to achieve in a real testbed.

Each simulation scenario described in the next section is
composed of emulated telosB devices (IEEE 802.15.4 com-
patible) and a controller running on a PC, it communicates
with the emulated network through “Serial Server” COOJA
plugin. Each scenario was simulated 20 times for 30 minutes,
in order to obtain statistical significance.

The following metrics are assessed: (1) delivery, defined as
the end-to-end delivery ratio; (2) delay, the time packet takes
to reach its final destination (including queue time, and route
request-response delay); (3) Control overhead, total number
of non-data packets transmitted per node per minute; and
(4) the time to controller recognize all network nodes. A
control packet retransmission is processed as a new packet
transmission for metric calculation purposes.

B. Simulation Scenarios

Three factors were varied in the simulations: topology,
network size, and ND/CD protocols. We chose square grid
topologies and varied the link status: (1) fully bidirectional, (2)
random links disabled? or (3) fully bidirectional in which the
controller is able to reach all nodes in one hop. The controller
was positioned in the corner of the grid, and another node
node was set as the data sink.

The chosen network sizes are 9, 16 or 25. The underlying
CD and ND protocols used are the algorithms presented
in Section III or Collect-based (similar to Collection Tree
Protocol briefly explained in Section II). Our proposed ND
algorithm do not send link status updates; therefore, to provide
a fair comparison, we modified the Collect-based protocol to
not send neighbor information messages in case of link state
changes, as it would artificially increase the control overhead
in comparison to our protocol.

Other parameter had fixed values: regular nodes transmitted
data towards the sink at 1 packet/min. In the current imple-
mentation our ND algorithm beacon interval is set to 20 + (id
mod 10) seconds, and the CD beacon interval is fixed at 10
seconds. Collect protocol parameters are set to Contiki default.

V. RESULTS

Simulations results are presented and discussed in this
section. All graphs display 95% confidence intervals obtained

2The same links were disabled for all experiments. The network still had
a bidirectional connected component
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Fig. 2: Simulation Results

from the simulation runs. The legend for all graphs is displayed
in Figure 2a, “n” indicates the network size; CTA (controller to
all), FULL (fully bidirectional) or RND (random links off) is

the topology type; Collect or Simple is the ND/CD algorithm.

Delivery results are shown in Figure 2b, split into delivery
of data packets and of control packets. The most prominent
outcome is Collect ND inability to deal with CTA topology,
since no data is delivered in any scenario that combine
CTA with Collect ND. This algorithm fails to detect some
unidirectional links from the controller, causing the controller
to set incorrect routes on network nodes.

The fully bidirectional topology shows similar data and
control packets delivery. Collect ND scenarios present wider
confidence intervals, indicating that this algorithm is more sen-
sitive to small network interferences. In the 25-node scenario,
control packet delivery for Collect ND is 60% lower than
Simple ND; however, the confidence intervals overlap.

A trend of higher data and control delivery for the Simple
ND protocol is observed for the RND topology scenarios. Two
scenarios that show a clear advantage of Simple ND regarding
control packets delivery are the RND topology for 16 and 25-
node scenarios (34% vs. 80% and 44% vs. 89%). We also
observed that, for a fixed network size, Simple ND performs

similar regardless of the topology, particularly for data packets,
while Collect results does not.

Figure 2c exhibits delay results (note that the y axis is log-
scale). Collect ND values are better then Simple ND results,
both for data and control packets, although some scenarios
have overlapping confidence intervals. Simple ND control
packets take approximately twice the time to be delivered,
while data packets may take from 3.6 (9-node FULL topology)
to 50 (16-node FULL topology) times longer.

The reason for such large delay in Simple ND scenarios is
that the time to deliver the first data packets is high. It takes
longer to disseminate reachability information if no assump-
tion is made about bidirectional link. Since data packets start
to be transmitted at 1 minute of simulation time, regardless
of network conditions or node knowledge about controller
route, the first packet may wait a long time in the node queue
until it joins the network and gets a route to deliver the data
packet. This behavior is also the cause of the observed wide
confidence intervals for Simple ND.

It is interesting to note that CTA topologies allowed the
Simple ND algorithm to diminish packet delay in most scenar-
ios. For example, CTA data delivery is 10% faster than FULL
topology and 4 times faster than RND topology considering
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a 25-node network. Nonetheless, wide confidence intervals
hinder drawing definitive conclusions.

Figure 2d contains the time to controller obtain full network
topology, these results supports the explanation about delay
values. Simple ND takes from 2 to 8 times longer to inform the
whole network topology to the controller. In Simple ND, the
beacons are sent in fixed periodic intervals, while Collect ND
starts with short intervals allowing fast network convergence,
increasing the beacon interval later to avoid excessive control
overhead. In addition, Simple ND takes longer to propagate
controller reachability information, as it is transmitted in
periodic CD beacons, while Collect ND assumes bidirectional
links, thus is able to set the controller route directly, without
this extra delay.

Most 25-node network scenarios were not able to connect all
nodes to the controller, thus is displayed as zero in the graph.
This is due to the increase of control packets as the network
size increases, causing more collisions then the retransmission
mechanism is able to cope with. Retransmission timers and
beacon intervals could be fine tunned to enhance the results
of the 25-node topology.

Finally, we present control overhead results in Figure 2e.
Once again, Collect ND adaptive beacon intervals results in
lower overall overhead in comparison to Simple ND, specially
on smaller networks. The Collect ND performance is also
partly due to the modification we made to diminish the
number of neighbor information messages, which in turn could
trigger route recalculations and increase the number of route
configuration messages from the controller. We defer studying
neighbor information update frequency to future work.

Nonetheless, as network size increases, this advantage is less
prominent. More control traffic increases collisions, making
the adaptive Collect ND timer to reset more often, leading to
a larger number of control packets per node.

It is interesting to highlight the effect of network topology,
as Collect ND tends to perform better in fully bidirectional
networks, while Simple ND performs similar in any topology.

Another noteworthy fact is that Simple ND overhead de-
creased as network size increases, opposed to Collect ND.
This is explained from Simple ND design: as the network
increases the same CD beacons may be used to disseminate
more information at the same time. Note that although the
overhead per minute per node decreases, the total number of
control packets increases.

VI. CONCLUSIONS

Networks with asymmetric and unidirectional links are a
reality in WSN domain. We proposed to tackle this problem
with an SDN-based approach, in order to avoid flooding-
based strategies. To do so, specialized controller and neighbor
discovery mechanisms are needed.

We designed, implemented and tested a simple ND/CD
algorithm to fill this gap. Although it is simple, the simulation
experiments show improvements on packet delivery at the ex-
penses of increased delay and slightly more control overhead.

We consider to have achieved the goal of showing that it is
feasible to use SDN to take advantage of unidirectional links.

We intend to improve our proposed algorithms, for example,
by dynamically setting beacon intervals, using other metrics
than the hop count, and using CD beacons triggered by the
controller instead of periodic timers. In addition, we intend to
run experiments on larger topologies to test scalability limits.
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