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Abstract—In this paper we proposeand test a new modulation strategy
to be used in impulse-radio ultra-wide band (IR-UWB) modulation. The
useof short-duration pulsesto convey information hasrecentlyemergedas
a powerful alternative to futur e-generationspread-spectrumwirelesssys-
tems. The proposedmethod has shown significant advantagesover exist-
ing modulation schemesfor IR-UWB modulation, specially when a high
thr oughput is desired. The techniqueis basedon the designof pulsesusing
Hermite functions, such that an orthogonal M-ary modulation schemeis
obtained. The paper presentsdetailed information of the designprocedure
and simulationsshowing preliminary resultsfor AWGN channels.

I. INTRODUCTION�
N recent years there has been a growing interest in Ultra-
Wide Bandwidth communications (UWB) by means of Im-

pulse Radio (IR). This technique has emerged as a possible al-
ternative to future wireless communications systems. IR/UWB
systems differ from current systems basically by the lack of a
continuous sinusoidal carrier. In this kind of systems, trans-
mitted signals are impulsive, i.e., they are extremely short in
time, and therefore have a highly spread spectrum. This high
frequency content, with no DC component, allows its carrierless
transmission. The technology to generate these pulses, with du-
ration in the order of 1ns, is already available, and have been
used for years in radar systems.

The initial interest in this area came from military applica-
tions, in which the communications security is enhanced due to
the low probabilities of detection/interception afforded by the
short pulse durations and its spread spectrum with low power
density. The technique also looks promising for civilian applica-
tions, due to the low power required, the multiuser capacity, the
availability of the technology to generate and receive the pulses
with little complexity and to its high capability to mitigate the
effects of multipath by using more than one copy of the pulse to
construct the received signal (specially in indoor/short distance
wireless environments).

As there is no current regulation for allocating bandwidths
as wide as 1GHz, IR/UWB systems must be treated as interfer-
ence by other systems. This affects IR/UWB systems, for its
signals need to compete with a variety of interfering signals and
yet not interfere with other existing systems. These conditions
lead to the same requirements of the military systems aiming to
minimize the detection/interception probability, i.e., the spectral
content must be kept to the minimum power necessary to guar-
antee the desired communication quality.

Being composed of extremely short pulses precisely located
in time inside a relatively long time frame, while general noise
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and interfering signals occur randomly and continuously along
this frame, UWB signals have a great advantage over noise. As
it is shown in this paper, this fact along with efficient modulation
and detection schemes put IR/UWB communications in a privi-
leged condition, being able to operate below ambient noise, with
signal-to-noise ratios (SNR) as low as ��������� . Indeed IR/UWB
proves to be a strong candidate for future communication sys-
tems, including future generations of cellular systems.

In this work we propose a new form of modulation for
IR/UWB systems based on orthogonal pulses. The addition of
orthogonality into IR/UWB communications opens new oppor-
tunities for evolution of these systems. The orthogonal pulse
waveforms can be used either as a form to expand multiple ac-
cess (or multi-user) capacity, a form to expand IR/UWB sys-
tems, or as an alternative form of data modulation, which we
develop and test in this paper, showing its high efficiency and its
good own features.

The proposed Pulse Shape Modulation (PSM) scheme is
compared with the well known Pulse Position Modulation
(PPM) [1], which is reviewed in the next section. The PSM
scheme is introduced in Section III. Section IV describes the
methodology for obtaining four orthogonal pulses, suitable to
compose a quaternary orthogonal PSM. Section V presents
some simulations and in Section VI the conclusions are pre-
sented.

II. PULSE POSITION MODULATION

Pulse Position Modulation [1] consists in representing each
symbol by a corresponding delay in the transmitted pulse. The
transmitted signal is then expressed by:
	�
���������������� ��������� � �!� (1)

where � � is the delay of the � -th pulse corresponding to the
symbol represented. In a binary modulation we have typically
� � � � representing bit 0 and � � �#" representing bit 1, where" is the time delay adopted in the scheme. The pulse waveform
is represented by �$�&%'� . �(� is the frame time (from the system
viewpoint) or pulse repetition time (from the user viewpoint). In
[1] the authors suggested a totally temporal modulation-based
system, in which the binary data are modulated by PPM and
multiple access is achieved with a pseudo-random time hopping
technique. The resulting signal is expressed by:

)�*,+.-/�0����1� � �$�� �2�3� � �54 *,+.-� �76�� "8% � *,+.-9 �;:=<?>A@ � (2)

where B indicates the B -th user, 4 *C+.-� represents the pulse delay

pattern, ��6 is the basic time delay unit and � *,+.-9 �;:=< > @ represents
the data stream. DFE is the number of pulses being modulated
by one single symbol. Notice that "8% � *C+.-9 �;:=<G>8@ is equivalent to � � .
This system is depicted in figure 1 for user B �IH .
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Fig. 1. A totally temporal modulation-based scheme, with uniform pulse train
spacing and pseudo-random time-hopping for multiple access and PPM for data
modulation.

In the PPM scheme, time modulation leads to a variable
time between pulses, coded by pseudo-random sequences which
gives a random aspect to the signal, both in time and frequency.
The resulting good features are the code division channelization
avoiding catastrophic collisions with a power distribution more
uniform than that achieved with a purely deterministic TDMA
scheme. It also decorrelates the in-band interfering signals by
the use of the coded time hops. Detection can be accomplished
by a simple receiver, in which a matched filter or a signal cor-
relator is used to estimate the pulse arrival time, possibly using
many copies of the same pulse created by multipath propaga-
tion.

The pulse waveform, ������ , can be any pulse with a short ef-
fective duration. Two waveforms commonly used are the Gaus-
sian and Rayleigh pulses which are given, respectively, by the
following expressions:

�'& ��)(+*�� � H � �0-,.*��0/1 �32 * /547698 : � 0/
� * /�; (3)

�'< ��)(+*�� �#��-,.* / � 47698 : � 0/
� * /=; (4)

where * is a time scale factor.
Conroy [2] first investigated these two pulses highlighting the

fact that they are respectively even and odd time functions, what
makes them orthogonal in time. It was also noted that the power
spectrum densities of the two pulses are similar, allowing to use
both pulses simultaneously, sharing the same bandwidth, hence
doubling the total capacity of the system. This could be achieved
using ordinary PPM for data modulation having half of the users
using one kind of pulses while the other half use the other kind.
Another possibility is to send simultaneously two bits from a
given data stream, where each bit is carried by one of the two
kinds of pulses. The Gaussian and Rayleigh pulses are plotted
in figure 2.

In PPM, orthogonal signals can be obtained by making " in
Eq. (2) greater or equal to the width of the pulse waveform, but
a time slot of twice the pulse width would be required for each
bit, reducing the total capacity of the system.
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Fig. 2. Gaussian and Rayleigh Pulses.

The scheme initially suggested for PPM [1] performs recep-
tion through correlation of the received signal with a special
template waveform composed by the sum of the two possible
transmitted pulses, being one of them inverted and delayed:> ���� � � & ���� � � & �� � "8� (5)

where " was previously chosen to minimize the cross-
correlation between �?& �0�� and �'& �� � "8� . This scheme allows
the use of a single correlator whose output gives positive values
when applied to in-phase pulses and negative values to pulses
delayed by " . This scheme neglects the possible signal inver-
sion due to reflections in the propagation path or to the relative
positions of transmitter and receiver. So, it depends upon an ad-
ditional scheme to determine the polarity of the received signal,
whose efficiency and complexity may affect the whole system.

III. PULSE SHAPE MODULATION

The new form of IR/UWB modulation proposed in this work,
Pulse Shape Modulation (PSM), is based on the orthogonality
of pulse waveforms. The basic idea is to represent bits 1 and 0
by two orthogonal pulses, that can be, for example, the Gaussian
and Rayleigh pulses given in Eqs (3) and (4), respectively.

Initially, the motivation for this form of modulation in
IR/UWB systems is related to the possibility of requiring less
time precision than PPM and being more immune to multipath.
It is desirable to have a detection design independent of the re-
ceived signal polarity, avoiding some of the requirements posed
by PPM. The binary case described above is an example of or-
thogonal PSM. Generic M-ary modulation can be achieved by
combining M distinct orthogonal pulses, in which case we have
an M-ary orthogonal PSM, which will be explored in the fol-
lowing sections.

A. OrthogonalFunctions

From the solution of the Sturm-Liouville partial differential
equations some sets of orthogonal functions are specified over
defined intervals [3], [4], e.g., Legendre, Bessel and Hermite
functions among other polynomial-based functions. These are
infinite sets with the property that any square-integrable (or
finite-energy) function can be projected (or expanded) in any
of the sets, i.e., any finite-energy function can be expressed as
a linear combination of the functions of any of these orthogonal
sets. In other words we can say that any of these sets form a
basis for the space @BA of the square-integrable functions.
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We can take finite subspaces from @ A by selecting only a
finite number of functions from an orthogonal set. There-
fore, the D -dimensional Hermite space can be defined as the
space spanned by the D first Hermite functions [5], � < ����������
	�� ����� <��������� . Figure 3 shows some of the first Hermite
functions, given by the expression
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Fig. 3. First Three Hermite Functions.

	�� ���� ��� � ������ ����� : /� � � ��! 1 2 (6)

where � � ���� are the Hermite polynomials, recursively obtained
by the formulas:� � �0�� � H (7)� � �0�� � �  (8)� ��" � ���� � �  � � ���� � � � � � �#� �0�� � �%$ H!�.% (9)

The expressions for the first Hermite functions are given be-
low:	 � �0�� � H&1 2 � ����� : / (10)	 �A�0�� � � � � 1 2 � �'���;: / (11)	 / �0�� � � 0/ � H� � 1 2 � �'��� : / (12)	�( �0�� � �  ( �%) � ) 1 2 � �'��� : / (13)	+* �0�� �-,  * � H � 0//. )

� � 0 1 2 � �'���;: / (14)

The Fourier Transform of the Hermite functions is presented
next:1 ��" � �32 ���54 �� . H � 2 1 � �32 �6. 4 �� . H 1 � ��� �32 � (15)

An interesting fact, proved with the help of time-frequency
analysis theory [5], is that the Hermite spaces are maximally
concentrated both in time and in frequency. This allows the
shortest effective duration waveforms without having a fre-
quency content higher than necessary. Besides avoiding fur-
ther difficulties for the signal generation, this guarantees optimal
use of the communications resources measured by the duration-
bandwidth product. Hence, Hermite spaces constitute promising
signal spaces for the desired orthogonal functions.

B. HermitePulses

We will define D th-order Hermite pulses as any pulses be-
longing to the D -dimensional Hermite space. Therefore, we
formally define a Hermite pulse as one expressed by:

�87�9��0�� �;: <���� �0�� 47698 : � 0/
� ; (16)

where : <<�#� �0�� is a polynomial in the variable  with degree
D � H . It can be easily seen that the Gaussian and Rayleigh
pulses are particular cases of Hermite pulses. We now define
the vector composed by the D first Hermite functions as:=	 < �0�� �?> 	@� ���� 	 � �0�� % %�% 	 <��#� ����BA (17)

Therefore, any D th-order Hermite pulse can be expressed as:

�87�9��0�� � =	 < ����DCFE8G (18)

where CHE8G is a real column vector that relates the considered
pulse to the D first orthonormal Hermite functions, and it will
be called projectionvector. This means that each signal of the
Hermite space � < is being expressed through its orthonormal
basis. In this context, the Gaussian and Rayleigh pulses with*�� H can be expressed by:CJI8KML � H

� &1 , 2ONP H
�
� 1 �

QR
and CHSTKUL$� �&1 , 2?NP � H� QR

(19)

The orthogonality of these two pulses becomes obvious by
the orthogonality of their projection vectors, since they represent
projections on an orthogonal basis. Now we wish to find a set
of V D th-order Hermite pulses, V W D , orthogonal to each
other, having no DC component and occupying the most similar
possible frequency bands. This set of pulses can be represented
by a matrix DYXZV formed by the projection vectors CBE[G from
each pulse:\ �]> CHE[G+^ _`CHE8G@^ A %�%�%YCHE8G@^ abA (20)

where the second index designates each particular pulse.
Notice that the requirement of absence of DC component

eliminates the trivial solution of using exactly the Hermite func-
tions as the set of desired pulses. Moreover, it poses a linear
restriction to the vector components CBE[G and therefore to the
lines of matrix

\
, lowering its rank and leading to:VcW D � H (21)

C. A Setof ThreeOrthogonalPulses

In this section we will describe the general procedure to get
a set of orthogonal pulses taking as an example a set of three
pulses with the desired characteristics. The basic methodology
is introduced, defining the figures of merit that quantify the qual-
ity of a candidate set.

According to (21), in order to get three orthogonal pulses, the
space dimension must be D $ , . So we will search for three
4th-order orthogonal Hermite pulses. The projection vector of
each pulse becomes C ETd �5e � � �f� � / � (hg3i . Hence,

�87 & ���� � � �h	+� ����6. � � 	 � ����6. � / 	 / �0��6. � ( 	 ( �0�� (22)
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The requirement of zero DC component leads to� / � � 1 � � � . As a consequence, we have:\ � N��P
� � � � � / � � (� / � � /-/ � / (

� 1 � � � � � 1 � � � / � 1 � � � (� * � � * / � * (
Q ��R (23)

For this matrix to be orthogonal, it must satisfy
\ i \ ����� ,

which leads to an undetermined system with 6 equations and
9 variables. Among the infinite possible solutions we will se-
lect one which leads to three pulses of similar bandwidths. This
can be obtained using equation (15) to calculate meancentral
frequencyand frequencyspreading, whose definitions are anal-
ogous to the statistical definitions of mean value and variance
and usually referred to as mean frequency and bandwidth in the
time-frequency literature. A search for the set of pulses that
minimizes a determined functional based on these measures can
be made. For such, we define the energy spectral density of a
generic pulse as �	� �32 � , and then we can define the central fre-
quency of a pulse as [6]:2 � � 
��� 2� �	� ��2 �� / � 2
���  � � �32 �� / � 2 � ��� �� 2� ��� �32 �� / � 2 (24)

since the signal is normalized. This results in:2 � � �1 2�� � � / . � � /, . ) � ( /� �
1 0
H �
�<� � (�� (25)

Next we define the squared mean frequency spreading as:

* /� � 
��� ��2 � 2 � �0/� �	� ��2 �� / � 2
 ��  ��� �32 �� / � 2 (26)

which, for the considered pulse, results in:* /� � H��� � � / . )
�
�<� / .��

�
� ( / � 1 0 �<�.� ( � 2 � / (27)

Using the definitions above, we can define the edge-
frequencies, 2 � and 2 / , of the spectrum as those enclosing a
given portion of the total energy:2�� � 2 � ��� * � and 2 / � 2 � . � * � (28)

It was empirically found that for � � H�% ) the width 2 / � 2 H
corresponds approximately to the classical �f)3�3� bandwidth.
Finally the function to be minimized is defined as: �I��2 � ^ _ � 2 � ^ A � / . �32 / ^ _ � 2 / ^ A � / . ��2 � ^ _ � 2 � ^ ��� / .

�32 / ^ _ � 2 / ^ � � / . ��2�� ^ A � 2�� ^ � � / .1��2 / ^ A � 2 / ^ � � / (29)

where the second index corresponds to the considered pulse.
The pulses found are shown in figure 4, and correspond to the

following vectors:C _ K d �"! � � ) , 1 H � � H , 1 H �$# i (30)C A K d � ! � H , 1 0 H , 1 ) � H , � � 1 �8� � ) , � 1 � # i (31)C%� K d � ! H , 1 0 � H , 1 ) � H., � 1 � � ) , � � 1 �3� # i (32)
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Fig. 4. Three optimal orthogonal pulses.

The three pulses are given by: �'& & !)($% �+* ��, � (.-0/ � ! ��, � / , � %1(�$2 �43 , 5 6�7�8 �:9:; (33)

 ; & & !)($% �+*=< , � (.-0/ ��, 3 ( ; /�!?> , � * ��, � %.( * ��, 3�$2 �)� , 5 6 7�8 �@94; (34) -A& & !)($% �+*=< , � (.- * ��, 3 ( ; /�!?> , � * ��, � %.(B/ ��, 3�$2 �)� , 5 6�7�8 � 94; (35)

The spectra of these pulses can be seen in figure 5. Note that
the second and third pulses have identical spectra. Observing
closely their time representations, it can be seen that they are
inverted versions (both in time and amplitude) of each other,
i.e., � ( & & �0�� � � � / & & � � �� , what explains this fact.

−3dB
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Fig. 5. Frequency spectra of the three proposed orthogonal pulses.

IV. A SET OF FOUR ORTHOGONAL PULSES

For the purpose of data modulation it is desirable to have a
number of V � �DC waveforms to represent a set of E bits,
constituting an V -ary modulation. In this section we will search
for a set of four orthogonal pulses so that a quaternary orthog-
onal modulation can be implemented. In order to obtain four
orthogonal pulses, we already know from (21) that we shall
have D $ � . In this case, the projection vector is CBEGF1�e � � � � � / � ( � *hg i . And similarly to section III-C, the require-
ment of zero DC component yields � / � � 1 � � � �IH (/ � * .

Now we have a , X , matrix
\

, which leads to a system
with 10 equations and 16 variables. If we followed the same
procedure used for the set of three pulses, we would have to
choose the value of six variables in each iteration, instead of
three as before. This would render the dimension of the search
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space prohibitive. In addition, the equations involved become
increasingly more complex. As a consequence, an alternative
procedure is proposed.

We are looking for a set of orthogonal vectors, therefore we
can use well-known methods to generate orthogonal squared
matrices to obtain the candidate sets. We begin by decomposing
matrix

\
in a (reduced) square matrix,

\ S , and a line combi-
nation matrix , � :\ � � \ S (36)

The orthogonal matrix equation can be rewritten as:\��T\ �+��� � \��S � � � \ S � ��� (37)

where � � � can be decomposed in its eigenvalues and eigen-
vectors as� � � ��� �
	 � (38)

Defining the matrix
�\

as:�\ � 	 _ : A � \ S (39)

it is easy to see that
�\ � �\ � � � . So, we now have a square or-

thogonal matrix. We can then apply known methods to generate
orthogonal matrices for obtaining, iteratively, the matrix

�\
, and

determining next the corresponding matrix
\ S (and

\
) by the

equation:\ S ��� � _� 	 _ : A�� � _ �\
(40)

We can scan the space of possible solutions in an ordered
manner looking for the solution that minimizes the functional
similarly to what was done in the three-pulse case. The func-
tional to be minimized is essentially the same of equation (29): �I��2�� ^ _ � 2 � ^ A � / . �32 / ^ _ � 2 / ^ A � / . ��2�� ^ _ � 2 � ^ � � / .

��2 / ^ _ � 2 / ^ � � / . �32�� ^ _ � 2�� ^ � � / . ��2 / ^ _ � 2 / ^ � � / .
��2 � ^ A � 2 � ^ ��� / . �32 / ^ A � 2 / ^ �3� / . ��2 � ^ A � 2 � ^ �3� / .
��2 / ^ A � 2 / ^ �3� / . �32 � ^ � � 2 � ^ �3� / . �32 / ^ � � 2 / ^ �3� / (41)

where 2 � and 2 / are given by (28), and 2 � and * /� are calculated
using (24) and (26).

The search procedure begins by the construction of an orthog-
onal , X , matrix,

�\
, making the product of an upper by a lower

orthonormal Hessenberg matrix, both obtained by the product of
3 rotations each, given by the parameters ��� (�� � H (�%,% % ( 0 . Next,
(40) is used to determine

�\
and the parameters � � to � * from

each pulse. With these parameters in hands, we calculate the
value of the functional under minimization using (41).

The best set of 4 pulses found is shown in figure 6, and corre-
sponds to the following vectors:

��� K F�� ��� * �, � < 3 2 � * ��, �� , �)�, �)� 2 � / ��, �� * �, �)� ���
� � K F�� ��� * �, � < 3 * 2 � * ��, �� , �)�, �)� * 2 � / ��, �� * �, �)� �!�
� " K F � � � , �, �)� * 2 � / ��, �� � 2 � * ��, �� * �, �)���
�$# K F � � � , �, �)� 2 � / ��, �� � * 2 � * ��, �� * �, �)��� (42)
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Fig. 6. Four Orthogonal Hermite Pulses.

The spectra of the pulses found can be seen in figure 7. No-
tice once more that two pairs of pulses have identical spectra. In
figure 6, notice again that each pulse corresponds to the inverted
version of another one, more precisely, � / &&% �0�� � �<� &'% � � ��
and � * & % ���� � � ( & % � � �� , what explains the identical fre-
quency contents.

Fig. 7. Frequency Spectra of the Four Orthogonal Pulses.

V. SIMULATIONS

In order to evaluate several modes of PSM as candidates
for data-modulation methods for IR/UWB systems, simulations
have been performed using routines developed in MATLAB c

(
to compute the bit error rate (BER) for some values of signal-to-
noise ratio (SNR), considering an AWGN channel. For compar-
ison, we computed the performance of the following modulation
schemes:
1. BinaryPPMschemes:

(a) BPPM1 - PPM with one correlator: the original PPM
scheme described is section II, proposed in [1].

(b) BPPM2 - PPM with two correlators: a PPM modified to
prevent problems with signal inversion doing separate correla-
tions with each of the two possible delay values and deciding for
the greatest absolute value.
2. BinaryPSMschemes:

(a) BPSM2 - Binary PSMwith two correlators: uses the two
orthogonal Gaussian and Rayleigh pulses to represent the bits 0
and 1 as described in section III. The received signal is passed
through two independent correlators, each designed for one of
the two standard pulses. Just like scheme (1b), this scheme is
immune to signal inversion problems.



International Telecommunications Symposium – ITS2002, Natal, Brazil

(b) BPSM1 - BinaryPSMwith onecorrelator: same as above
but using only one correlator, with a detection scheme similar to
the one used by scheme (1a).
3. QuaternaryPSMschemes:

(a) QOPSM4 - QuaternaryOrthogonalPSMwith four corre-
lators: uses the four pulses designed in section IV, given by Eq.
(42). In the detection, it decides for the greatest absolute value
among the four correlations made with each standard waveform.
It is also immune to signal inversion problems.

(b) QOPSM2 - QuaternaryOrthogonal PSM with two cor-
relators: same as above but using only two correlators, with a
detection scheme similar to the one used by scheme (1a).

(c) QNPSM - QuaternaryNon-orthogonal PSM: uses four
waveforms that are linear combinations of the basic Gaussian
and Rayleigh pulses. The detection uses two correlators that
give the weights that each basic pulse have in the received wave-
form, thus deciding for the closest symbol. It makes no assump-
tion about the polarity of the received waveform and it is im-
mune to signal inversion problems.

The simulated environment consists in a system with a single
user with fixed duty cycle given by the ratio of the effective du-
ration of the pulses of � % � � ) by a time frame of � � �IH �3� � ) .
In the PPM schemes the effective duration is increased by" � "������?� � %,H � 0 � ) . The effect of transmission through an ad-
ditive Gaussian channel is obtained by simple addition of Gaus-
sian white noise with the power fit to the desired SNR. The re-
sults are presented in figure 8.
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Fig. 8. Performance of various modulation schemes in presence of additive
Gaussian noise.

Among all the tested binary schemes, the original PPM (1a-
BPPM1) reached the best results. However it is remarkable the
loss of quality of PPM when using two correlators (1b-BPPM2).
With this scheme it is necessary an increase of about � ��� in the
SNR to attain the same BER (in the range from H � ��� to H � � ( )
of the original PPM. This difference can be explained by the fact
that the value of " used was originally chosen to be equal to " ����� ,
which minimizes


 �'&��0�� �'&��0 � "8� �  . This is suitable for the
first scheme but not for the second, whose best choice would be
a value great enough to make � & �� � "8� orthogonal to � & ���� ,
but this would significantly modify the time slot required, as
explained in section II.

The standard binary PSM scheme with two correlators (2a-
BPSM2), had a performance near H ��� worse than scheme (1a-
BPPM1) and thus approximately , ��� better than PPM with
two correlators (1b-BPPM2). Differently from what happens
with the two PPM schemes, the performances of the two PSM
schemes (2a-BPSM2) and (2b-BPSM1) are very similar, the lat-
ter being only approximately � % � �3� better than the first. We
highlight that the best binary scheme immune to the signal inver-
sion problem is the standard binary PSM (2a-BPSM2) proposed
in section III.

The standard quaternary orthogonal PSM scheme (3a-
QOPSM4) with four correlators have a performance about � ���
better the non-orthogonal scheme (3c-QNPSM) and only � % � ���
worse the alternative 2-correlator scheme (3b-QOPSM2). The
quaternary scheme (3a-QOPSM4) has BER equivalent to that
of a binary scheme (2a-BPSM2) with an SNR � % � ��� lower or
a binary PPM scheme (1aBPPM1) with a SNR approximately
�8��� smaller. As a quaternary scheme provides twice the rate
of a binary scheme, the above results mean that the quaternary
orthogonalPSMschemes(3b-QOPSM2) and (3a-QOPSM4) are
the mostefficientamong all simulated schemes, since using two
binary channels with a given SNR would rise the total power in)���� .

VI. CONCLUSIONS

IR/UWB communications have proved to have great effi-
ciency in the use of available power and bandwidth. The sim-
ulations presented showed that a careful choice of the modula-
tion scheme can have great influence on the final system perfor-
mance. The proposed new form of modulation based on Hermite
pulses, PSM, presented a good performance, surpassing PPM,
specially when the restrictions due to uncertainty about the re-
ceived signal polarity are respected.

The introduction of orthogonality into IR/UWB systems by
the use of orthogonal pulse shape boosted its natural qualities as
it was evidenced by the superior performance achieved by the
Quaternary Orthogonal PSM schemes, even when no informa-
tion about the received signal polarity is used, when compared
to any of the modulation schemes tested.

A method for obtaining sets of orthogonal IR/UWB pulses
based on the Hermite functions was derived. This method was
successfully applied to find sets of 3 and 4 pulses, and can be
easily extended to greater sets. The resulting pulses have op-
timal characteristics for their utilization in IR/UWB systems as
they have no DC component, similar frequency spectra and min-
imum duration-bandwidth products.
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