
TREE ORGANIZED LEXICONS AND BEAM SEARCH:

IMPLEMENTATIONAL ISSUES

Carlos Alberto Ynoguti
Departamento de Telecomunicações

Instituto Nacional de Telecomunicações (INATEL)
ynoguti@inatel.br

Fábio Violaro
Departamento de Comunicações

Faculdade de Engenharia Elétrica e de Computação
Universidade Estadual de Campinas (UNICAMP)

fabio@decom.fee.unicamp.br

ABSTRACT

The aim of this work is to enlighten some
implementational issues on two widely used techniques
for reduction in search space for large vocabulary
speech recognition systems: tree organized lexicons
and Viterbi Beam Search. We show how we can exploit
some symmetries of the search space to use these
techniques together and achieve a great reduction in
computational load and, consequently, in recognition
times. Tests showed that recognition times fall down by
a factor of 5 using this procedure.

1 INTRODUCTION

In HMM based large vocabulary continuous speech
recognition systems, the search for the best word
sequence – in a maximum a posteriori sense – is one of
the most time consuming tasks. When aligning the
locution to be recognized with the reference patterns,
we must consider a large number of paths due to
vocabulary size and the various alignment possibilities
produced by continuous speech [9]. So, to recognize a
given spoken sentence, we have to perform an
astronomical amount of calculations, and it takes a lot
of time even with very fast processors.

Several techniques have been developed to avoid such
computational effort and in this work we study two of
them: the organization of the pronunciation lexicon in a
prefix tree structure [2][3], and a complexity reduction
procedure called Beam Search [4] that eliminates
improbable candidates for the best path in the search
space.

We exploit some symmetries of the search space to
achieve an extra reduction of the calculations to be
made. In fact, we observed a reduction by a factor of 5
in recognition times using the tree organized lexicon
system when compared to the linear organized lexicon
system.

2 TREE ORGANI ZED LEXICONS [8].

For a small vocabulary system, it’ s sufficient to have a
separate representation for each word. This strategy is
called a linear lexicon. An example of linear lexicon is
shown in Figure 1. For large vocabularies, however,
it’s useful to organize the lexicon in a prefix tree
structure, as depicted in Figure 2.

s ey
say

s p ee k
speak

t aw k
talk

s p ee ch
speech

s p eh l
spell

t eh l
tell

Figure 1. Part of a linear organized lexicon.

s

ey say

p

ee

k speak

ch speech

eh

l spell

t aw
k

eh
l

tell

talk

Figure 2. Same lexicon organized in a prefix tree structure.

When organizing a lexicon as a prefix tree, the number
of calculations to be performed is reduced when
compared to linear organized lexicons, because we
don’ t have to repeat operations already performed. For
example, for the words speak and speech, the two
initial phones are the same, so the likelihoods for a
given observation will be exactly the same. The task of
a tree organized lexicon is to take into account these
redundancies and avoid unnecessary calculations.

2.1 INCORPORATING LANGUAGE MODEL .

When using a language model on a tree organized
lexicon there are some issues that must be considered.
For a bigram language model, for example, the
following problem arises: a) the identity of a word w
under hypothesis is only known after reaching a leaf of
the tree; b) the language model probabilities can only
be incorporated when the system reaches the terminal
state of the second word of the bigram. As a
consequence, it’ s only possible to apply the language
model at the end of the tree after taking into account
the previous word.

To allow the application of the dynamic programming
principles, we must organize the search space in the
following manner: for each predecessor word v, we
introduce a separate copy of the lexical tree so that
during the search process we always know the
predecessor word v when we make the hypothesis of
the end of a word w. Figure 3 shows this concept for a
three word vocabulary A, B and C, where the lexicon
tree is shown in a simplified schematic form.

A

B

C

Sil

A

A

B

C

Sil

A

B

C

Sil

A

B

C

Sil

B

C

Sil

A

B

C

Sil

A

A

B

C

Sil

A

B

C

Sil

A

B

C

Sil

B

C

Sil

Acoustic
Model

Acoustic
Model

Language
Model

t t

word end hypothesis A,B,C
root of a tree copy for the history A,B,C

: acoustic models recombination within a tree copy
: bigram language model recombination
: word boundary recombination for silence hypothesis

Figure 3. Modification of the search space for the utilization
of a bigram language model over a tree organized lexicon.

In the recognition process, in addiction to spoken
words, we must account for possible pauses between
the spoken words. To handle these pauses, we must
have a HMM model for the silence (Sil) and add a
separate copy of this model to each tree. Furthermore,
for a possible silence at the sentence beginning, we
have a separate copy of the lexical tree for the first
word of the sentence; this tree has the silence as
predecessor. As a result of this approach, the silence
model copies do not require a special treatment, and
can be processed as regular words of the vocabulary.

There is, however, an exception: at the word
boundaries there is no language model for the silence
model. As shown in Figure 3, there are two kinds of
path extensions and recombinations, namely in the
interior of the words or lexical trees and at word
boundaries. In the word interior we have the bold lines
representing the HMMs transitions. At word
boundaries we have the thin and the dashed lines,
which represent the bigram language model
recombinations. The dashed lines are related to
recombinations for intraphrase silence copies.

To start up a new word hypothesis, we must
incorporate the bigram probability into the score and
determine the best predecessor word. This best score is
then propagated into the root of the associated lexical
tree, which is represented by the symbol

�
. The

symbol � denotes a word end.

3 BEAM SEARCH PROCEDURE.

The search space size grows up according to the
number of words in the system vocabulary. For
dictation systems, where vocabulary sizes of tens of
thousands words are common, the search space
becomes so large that the computational cost becomes
prohibitive. However the nonhomogeneous probability
distribution over the several paths can be taken into
account in order to reduce the computacional
complexity. When the number of states is large, at each
time a large fraction of them have scores that are very
small compared to the maximun likelihood. This fact
indicates that the optimum path will probably not pass
through these states and we do not have to calculate
their scores anymore.

This reasoning lead us to a complexity reduction
technique known as Beam Search [4], that consists in
ignoring, at each time, those states whose accumulated
likelihood is less than the maximum likelihood by a
given threshold. With this technique, the calculations to
expand “bad” nodes are avoided. It´s clear from the
nature of this technique that we can lose the best path,
but in practice, a convenient choice of the pruning
threshold results in a speed gain of an order of
magnitude, while introducing a negligible loss in word
error rate performance.

4 TESTS.

The tests consisted on a comparative study between
two systems, one with linear organized lexicon (One
Step) and the other with tree organized lexicon
(Herrman-Ney). The index of performance is the
recognition time. In fact, it’s known that the tree
organized lexicon leads to a better performance, but
how much better it is and what secrets are inside its
implementation are the issues of this work.

Up until the preparation of this article the language
model was not implemented yet, and to avoid high
word error rates, we decided to make tests in speaker
dependent mode only. This limitation however is of no
consequence for the test results because we are
concerned about recognition times and not about word
error rates. It’s important to emphasize that either the
One Sep or the Herrman-Ney algorithms achieve
exactly the same results in terms of word error rate
(even the likelihoods assigned to the candidate
sentences are exactly the same), i.e., the Herrman-Ney
algorithm is just an intelligent way to organize the
pronunciation lexicon.

4.1 EXPERIMENTAL SETUP

For the tests we used a locally developed speech
recognition system [10][12] based on continuous
HMMs and context independent phones as phonetic
units.

The configuration used for both systems was: 36
context independent phones as the acoustic sub-units;
each sub-unit was modeled by a 3 state HMM with 5
gaussians per mixture per state; feature vectors: Mel ,
delta-Mel and delta-delta-Mel cepstral coefficients,
each one with dimension 12; word duration model and
15 levels for search. The search levels refer to the
position of a word in a sentence; for example, the
second level corresponds to the second word in the
sentence. Then, for a search performed within 15
levels, this means that the sentence can have at most 15
words (including the initial e final silences).

For the recognition times evaluation a Pentium I I I
microcomputer with 866 MHz clock and 256 MBytes
RAM was used in all the tests reported in this work.

4.2 DATABASE

The sentences were chosen from a work from Alcaim
et. al. [1], where 200 phonetically balanced sentences
were listed. In these sentences we counted 694 different
words.

For the recordings, we used an adult male speaker that
spoke all the 200 sentences four times. Three of them
were used to train the system and the last one for the
tests. These locutions were used for speaker dependent
tests.

The recordings were performed in a relatively noiseless
room, with a SHURE SM-58 directional microphone,

using a SoundBlaster AWE 64 sound card. The
sentences were recorded at 11025 kHz sampling rate
and 16 bits of resolution. The locutions were manually
transcripted, using the Cool Edit 2000 software [12] for
viewing the waveform and spectrogram and earphones
to listen to them carefully.

4.3 TESTS WITHOUT BEAM SEARCH

In a first set of tests we compared the performance of
the two aforementioned systems without any pruning
procedure. The results of these initial tests are shown in
Table 1.

Table 1. Recognition times for the two search algorithms
without any pruning procedure. Mean over 600 locutions.

One Step 01:20 minutes
Herrman-Ney 01:10 minutes

We can observe a little improvement in the recognition
times when using a tree organized lexicon.

4.4 TESTS WITH BEAM SEARCH

In a second set of tests the Beam Search pruning
procedure was used to eliminate bad paths. With this
procedure we obtained the results shown in Table 2.

Table 2. Recognition times using Beam Search with pruning
threshold λ = 30. Mean over 600 locutions.

One Step 42 seconds
Herrman-Ney 16 seconds

4.5 RESULT ANALYSIS

The great time reduction observed is not solely due to
the lexicon organized tree and to the pruning threshold,
but also to the emission probabilities computation
procedure. We exploited some symmetries on the local
contributions for the total likelihood in order to reduce
the amount of calculations. Next we explain how this
was be done.

The recognition of a spoken sentence corresponds to
the task of finding the best path in the search space in a
minimum likelihood sense. The search space is formed
by the HMM models of all words in the vocabulary,
repeated at each level. In this work we used a 700 word
vocabulary and 15 search levels. So, for a sentence
recognition, the system has to process the Viterbi
algorithm over 700 x 15 = 10500 word HMM models.

To understand this, let’s analyze Figura 4 where we
illustrate the Viterbi algorithm working process.

When walking over the trellis, at each new entry, the
systems stays in the same state or make a transition to
the next state. To decide how the system will behave
with this new entry, we calculate a cost function
defined as

a ii
a kk

a jk
a ij

a jj

…

…

…

…

i
j

k

t =1…

b i[
]

b j[
]

b k[
]

y1 y2 y3 y4

aiibi(y4)

akkbk(y1) akkbk(y2) akkbk(y3) akkbk(y4)

a jk
b k

(y 1
)

a jk
b k

(y 2
)

a jk
b k

(y 3
)

a jk
b k

(y 4
)

ajjbj(y1) ajjbj(y2) ajjbj(y3) ajjbj(y4)

a ij
b j(y

1
)

a ij
b j(y

2
)

a ij
b j(y

3
)

a ij
b j(y

4
)

aiibi(y1) aiibi(y2) aiibi(y3)

t =2 t =3 t =4

Figura 4. Viterbi algorithm example.

))(log()log()1()(tjijij ybatvtv ++−= (1)

where)(tv j is the accumulated log-likelihood of the

best path arriving in state j at time t,)1(−tvi is the

accumulated log-likelihood of the best path reaching
state i at time (t-1),)log(ija is the transition log-

probability, and))(log(tj yb is the log-probability of

emitting symbol ty in state j. This emission log-

probability is given by:

),,(log())(log(
1

2
t

g

i
iitj yGyb ∑

=
σµ= (2)

where g is the number of gaussians in the mixture, each

one with mean iµ and variance 2
iσ .

As we can see, the computational load to calculate this
cost function is very high because we have several
logarithms and gaussians to be computed. After
multiplying these operations by the number of words,
the number of levels and also the number of states in
each word, we have an idea of the great effort that must
be made in order to recognize a spoken sentence.

There is, however, a symmetry in the search space that
can be favorably exploited: when calculating the
accumulated log-likelihood using (1), we observe that
the local contribution of a transition from state i to the
state j, given by

))(log()log(tjij yba + (3)

depends solely of the HMM model being analyzed and
the input symbol, and is independent of the level. So we
don’ t have to recalculate the local contribution for a
given HMM model for each level; it’s enough to
calculate it for just one level.

In a tree organized lexicon we can achieve an even
great amount of economy because the word models are
formed by the concatenation of acoustic sub-unit
models (context independent phones in our
simulations). Because of that, for each input frame
(feature vector) we have just to calculate the local
contributions of the acoustic sub-units and not the
contributions of the whole words.

Another processing economy arises when using the
Beam Search procedure over a tree organized lexicon:

in a given time, it may happen that one or more
acoustic sub-units have all their states pruned in all
levels by the Beam Search procedure. So it’s not
necessary to calculate the local contributions for this
sub-unit, because they simply will not be necessary for
the search. This is the main reason for the great time
reduction observed in Table 2.

5 CONCLUSIONS AND FUTURE WORK S.

In this work we have presented a theoretical study on
tree organized lexicons and a comparative study
between linear and tree organized lexicons.

In the evaluation tests, the tree organized lexicon
system achieved recognition times about 60% smaller
than those achieved by the linear organized lexicon
system using the Beam Search pruning strategy. This
result can be achieved using some symmetries in the
search space to avoid unnecessary calculations.

For the future, a bigram language model will be
incorporated to the system in order to reduce the word
error rate.

Acknowledgements: The authors would like to thank
the FAPESP agency for partial funding. Process
number 99/01241-2.

6 BIBLIOGRAPHY.

[1] ALCAIM, A., SOLEWICZ, J. A., MORAES, J. A.
Frequência de ocorrência dos fones e lista de
frases foneticamente balanceadas no português
falado no Rio de Janeiro. Revista da Sociedade
Brasileira de Telecomunicações, 7(1):23-41,
Brazil, 1992.

[2] AUBERT,X., DUGAST, C., NEY, H., and
STEINBISS, V. Large vocabulary continuous
speech recognition on Wall Street Journal data.
In Proceedings of the 1994 International
Conference on Acoustics, Speech and Signal
Processing, volume 2, pages 129-132.
Adelaide. Australia. IEEE. 1994.

[3] AUBERT, X. NEY, H. Large vocabulary
continuous speeech recognition using word
graphs. Proceedings of ICASSP, Detroit, MI,
May 1995.

[4] DELLER Jr., J. R., PROAKIS, J. G., HANSEN,
J.H.L. Discrete time processing of speech
signals. MacMillan Publishing Company. New
York. 1993.

[5] GUPTA, V.N., LENNIG, M., and
MERMELSTEIN, P. Fast search strategy in a
large vocabulary word recognizer. Journal of
the Acoustical Society of America. 84(6),
December 1998.

[6] JELINEK, F. Statistical methods for speech
recognition. MIT Press. London. 1998.

[7] NEY, H. The use of a one-stage dynamic
programming algorithm for connected word
recognition. IEEE Transactions on Acoustics,
Speech and Signal Processing. ASSP-32(2).
April 1984.

[8] NEY, H. & ORTMANNS, S. Dynamic
Programming Search for continuous Speech
Recognition. IEEE Signal Processing
Magazine. September 1999.

[9] RABINER, L. Fundamentals of speech recognition.
Prentice Hall Press. 1993

[10] YNOGUTI, Carlos Alberto. Reconhecimento de
fala contínua usando modelos ocultos de
Markov. Tese de Doutorado. UNICAMP.
Campinas. 1999.

[12] YNOGUTI, C. A. VIOLARO, F. "Um sistema de
reconhecimento de fala contínua baseado em
modelos de Markov contínuos." Anais do XVIII
Simpósio Brasileiro de Telecomunicações. 3 a 6
de setembro de 2000. Gramado.

[12] www.syntrillium.com (20/11/2001).

