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Abstract
Hereafter, we present a new approach1 dealing to couple with
the harmful effects of noise on speech recognition systems
(SRS). This approach is oriented to hardware redundancy and it
is essentially a modification of the classic software-based
recovery blocks scheme. When compared to conventional
approaches using Fast Fourier Transform (FFT) and Hamming
Code, the primary benefit of such a technique is to improve
system performance when operating in real (i.e., noisy)
environments. The second advantage is related to the
considerably low complexity and reduced area overhead
required for implementation. We implemented a fully version of
the proposed algorithm using the C language. The goal of this
implementation is twofold: first, it is used in this paper to
illustrate the effectiveness of the proposed ideas and enrich
further discussions. Second, it will be used in a near future as a
system single-source code specification that will be partitioned
and implemented according to a HW-SW codesign methodology
we have proposed in previous works.

Keywords: Digital Signal Processing (DSP); Speech-
Recognition Systems (SRS); Noise Immunity; On-Line Testing;
Software-Based Recovery Blocks (SBRB); Area overhead;
Performance Degradation.

1. Introduction
It is of common agreement the large increase of the

number of applications requiring digital signal processing (DSP)
components (implemented either in HW or SW parts). For
instance, the combination of intelligent, Internet-enabled
handheld devices and wireless technology has become popular
very quickly. However, users express two consistent, significant
complaints: it is difficult to use the keyboard-, menu-, or stylus-
based interface to input any but the simplest functions; and the
small screens are inadequate for meaningful output.

The obvious solution to both problems is to use
speech-recognition systems (SRS) technology. But even simple
voice applications are mistake-prone in noisy environments and
require processing and other resources beyond those available in
many cellular phones and personal digital assistants (PDAs). As

                                                
1 This work is partially supported by CNPq and FAPERGS.

said by Dr. Ken Hyers2 to the IEEE Computer Magazine [1]: “In
a handset, an SRS becomes too error prone because the devices
do not have enough processing power to handle noise filtering”.
Devices will eventually have more capabilities as SRS’ accuracy
and efficiency improve. SRS sometimes deliver more than 90
percent accuracy in laboratory conditions, but the rate can drop
to 50 percent or less in noisy environments [1].

If we consider applications like real-time robot
decision-making, Internet interactive multimedia, portable
telephones or aircraft on-board main computers, we can have a
large spectrum of dedicated functions that can be implemented
by means of voice processing, recognition algorithms, and
powerful data communication protocols. Thus a high-throughput
and reliable system architecture is mandatory since these
systems are expected to be used in real-time critical applications.

Companies such as IBM, Lucent Technologies, and
Motorola continue to work on improving and integrating SRS in
small-footprint devices. For example, IBM has developed a
speech-enabled coprocessor prototype for the Palm III that lets
users execute several hundred commands and also offloads work
from the main processor. In addition, Philips Electronics
recently announced that it has ported its SRS software to a
digital signal processor (DSP) developed by Lucent
Technologies for hands-free devices [1].

The challenge of getting sufficient processing power and
memory to handle many complex commands (in particular those
dedicated for noise filtering) in a package small and inexpensive
enough to work with handheld devices has delayed increased
implementation of SRS in cellular phones and PDAs.

Therefore, hereafter we propose a new approach to
couple with the high complexity of algorithms dedicated to
noise filtering. Compared to conventional approaches based on
Fast Fourier Transform (FFT) and Hamming Code, the proposed
technique improves the degree of success of SRS in terms of
recognizing the correct words in real noisy environments. The
algorithm used is based on Hidden Markov Models (HMM) and
performs on-line testing by means of the classic Software-Based
Recovery Block (SBRB) technique [15]. The use of HMM and
SBRB yields to the proposed approach a low complexity and
reduced area overhead when implemented in hardware.

The reminder of the paper is divided as follows:
Section 2 presents the basic concepts involving speech
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recognition systems. The control and data flows, by means of
general block diagrams, are briefly introduced to readers not
familiar with such type of DSP systems. Section 3 details the
proposed on-line testing approach by explaining how it
“reconstructs” noisy signals. It is also addressed a discussion
about the low complexity and the reduced area overhead
required to implement the proposed algorithm in hardware.
Section 4 is devoted to experimental results. A computation
example is presented to illustrate the effectiveness of the
proposed technique. To conclude, Section 5 presents the final
considerations and future work.

2. Preliminary Considerations on the General
Structure of Speech Recognition Systems

A speech recognition system (SRS) is basically a
pattern recognition system dedicated to detect speech. In other
words, to identify language words into a sound signal achieved
as input from the environment. Fig. 1 shows the main steps
performed by a front-end speech recognition system [2-5].

In the Signal Analysis step, a speech sampling will be
made with an A/D converter. Those samples are processed in
order to extract some relevant features from speech signal input.
This step is responsible for signal handling, by converting the
analog signal sampling, into a digital representation. The last
task performed in this step is the vector quantization, when the
speech signal is then replaced by a proper sequence of label-
codes (this is the input for the next step of the SRS system,
which is responsible for pattern matching).

The Pattern Matching & the Decision Logic steps are
the “identification” steps, where the words spelled in the speech
signal are recognized by generating a sequence of text words.
The observation sequence is evaluated using Hidden Markov
Models (HMM), which as the acoustic reference pattern, plays
the main role in the recognition process [10,11].

Signal Analysis Pattern Matching Decision Logic  

Vector Quantization 
(VQ) Codebook

* Feature Extraction 
   (Code Labels Sequence)

Speech
*

Words

Reference Patterns 
(HMM Markov Models)

Fig. 1. General block diagram of speech recognition systems
[2-5,16].

The main tasks performed in the signal analysis step
are depicted in fig. 2a, and are described as follows:

Sampling: the SRS converts speech sound from the
outside world into digital representation. Essentially, this task will
include a sample and hold device, and an analog-to-digital (A/D)
converter.

Low Pass Filter: cuts those high frequencies found on
the signal due to sampling. Usually this filter is adjusted by
sampling rate [4,12]. Typical cutoff frequency values in this type
of application have ranged from 4KHz to 8 KHz.

Pre-Emphasis Filter: adjusts the high variations on
spectrum frequencies due to glottal pulse and  lips radiation
found  in the speech signal behavior [5,6].

Windowing: cuts the speech signal into blocks of 10 ms
signal frame each. A Hamming window adjusts those frame
samples in order to avoid the “spectral leakage” due to signal
framing segmentation [7,13].

LPC/Cepstral Analysis: DSP algorithms process each
frame by generating a vector of cepstral coefficients, which are
the filter-model’s parameters, and describe the spectral behavior
for that frame [5,8].

VQ – Vector Quantization3: each cepstral coefficient is
evaluated by distance measure by using as a map a codebook
with reference vectors in the acoustic space. The final output is a
sequence of code labels4 (usually called observations sequence)
that will be evaluated by the Pattern Matching Process [4,6,9].

To do so, the Pattern Matching & Decision Logic
Block input data (i.e., the observation sequences from the Signal
Analysis Block) are actually an “index” to access the local cache
memories associated with each HMM block, as seen in fig. 2b.
As response to these accesses, the local memories output the
respective “probability of changing state from one node to
another”, in the Markov Model). Then, these probability values
are added to the previous values stored in the pre-accumulators
of the Pattern Matching & Logic Decision Block. (See fig. 2b.)

At the end of this process, the Decision Logic Block
compares the final probability values from the HMM blocks
against a reference (threshold) value and selects the one with
higher score (i.e., higher probability) of being the searched
word. Then, recognizing the word. The Pattern Matching &
Decision Logic steps have been implemented by the Viterbi
algorithm [2,6,11,14] to perform the evaluation of the code-
label sequence against the HMM structures. Fig. 2b illustrates
this situation for the pattern matching process [2,3].

3. The Proposed Methodology

Although convolutional codes, first introduced by
Elias [14], have been applied over the past decades to increase
the efficiency of numerous communication systems, where they
invariably improve the quality of the received information, there
remains to date a lack of reliability when such an information is
used to represent speech. In other words, voice-oriented systems
used in bank-transaction or security applications are frequently
struggled by noise like electromagnetic interference, or just
background noise. As consequence, the information (i.e., the
speech) is partially (or even totally) buried by noise. Thus,
reducing the reliability of the incoming signal.

To overcome this problem, we are proposing a new
approach to minimize (and if possible, eliminate) the noise
associated with voice signal. Thus, allowing a more reliable
speech recognition process by the system. The first idea behind
the approach is to perform the reconstruction of the incoming
signal every time the code labels sequence on the process of
recognition does not respect a fundamental rule of quality. The
algorithm used is based on Hidden Markov Models (HMM) and
performs on-line testing by means of a modified version of the
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4 After VQ, each code label in the sequence output (i.e., a
centroid in the acoustic space) is called “observation”.



classic Software-Based Recovery Block (SBRB) technique [15].
Fig. 3 details the main blocks of the proposed approach.
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Fig. 2. SRS general block diagram: (a) Signal Analysis Block; (b) Pattern Matching & Decision Logic Block [2,3,16].

Basically, the approach works as follows: the
incoming signal is analyzed by the Viterbi Algorithm which was
implemented by means of the Hidden Markov Models (HMM),
exactly as described in Section 2 (Fig. 2b). Note that the input
signal (indicated by “*” in fig. 3) is the observations sequence,
i.e., digital code labels representing speech. Therefore, in the
occurrence of an incoming signal, Subsystem-I begins the
process of recognition of the arriving observation codes. Note
that the SRS must be previously trained to do this work, and that
the number of words that can be recognized is equal to the
number of HMM Blocks inside Subsystems I or II. Each one of
these HMM Blocks is used to model a single word.

The whole approach is controlled by the Viterbi
Algorithm Controller (“VAC Block”, in fig. 3) which supervises
the processes running on Subsystem-I and on the Code Labels
Sequence Simulator (CLSS). While the goal of the “HMM”
Blocks in Subsystem-I is to compute the HMM probability
scores for each of the incoming observations (*), the goal of the
VAC Block is to check if the code labels sequence respects a
fundamental rule (to be defined later) and if it is not the case,
the VAC Block switches from Subsystem-I to CLSS. The VAC
Block remains switched on the CLSS during a predefined period
of time, and then, bounces back to the original incoming signal,
i.e., to Subsystem-I. This process is dynamically performed
every time the code labels sequence forming the original noisy
speech signal does not respect a fundamental rule of quality.

For comparison purpose, the proposed VAC Block
performs the Acceptance Tests that are commonly carried out in
software-based recovery blocks schemes [15]. Having this

comparison in mind, Fig. 3a shows the general block diagram of
the proposed approach, which executes the following algorithm:

Ensure T
By P
Else Q

Else Error
Where:

T: Word recognition process
P: Primary Block (STEP-I)
Q: Alternate Block (STEP-II)
Error: Word recognition failure (insufficient signal-to-

noise ratio, preventing the word to be correctly
recognized).

The CLSS Block operates synchronously with the
“HMM” Blocks of Subsystem-I under a unique clock signal
generated by the VAC Block. The CLSS performs a
pseudorandom generation [19] of code labels sequence
segments. These pseudorandom-generated segments are used by
the VAC Block to replace those segments of the original
incoming information that are corrupted by noise. The time
duration of each of these segments is 10ms. The whole process
is controlled by the VAC Block, which is in charge of executing
the Acceptance Test at the outputs of Subsystem-I. The
Acceptance Test is, in summary, the computation of the distance
between two consecutive code labels forming the original
incoming speech signal and the comparison of this value with a
predefined one. Fig. 4 summarizes this process.
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Fig. 3. The proposed approach: a) General Block Diagram; b) More details for a 3-word recognition example.
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Fig. 4. Details of the switching process for voice signal reconstruction. The pseudorandomly-generated observations [19] replace the incoming noisy
signal segments during the time period in which the VAC Block detects that the distance between two consecutive code labels forming the
original incoming speech signal is larger than a predefined reference value.

3.1 The Reconstruction Technique and the
Pseudorandom Generation of Code Labels

The reconstruction technique of the noisy original
signal and the pseudorandom generation process of observation
sequence segments are described as follows:

I) The observation sequence (or code labels sequence)
segments are stored in the Reference Vectors Codebook

(RVC), in the Vector Quantization Step (see fig. 2a). The
RVC can be implemented in hardware (resp. software) in the
form of a local cache memory (resp. large amount of space
allocated in the system’s memory) containing data
generated during the training procedure of the SRS.
Therefore, each address of the RVC stores a single number
normalized in the interval [0,1], which represents a reference
point in a two-dimensional map of the acoustic space.



II) For the above code labels sequence, the HMM Blocks of
Subsystem-I compute the score for the respective word they
were trained for. Concurrently to this process, the VAC
Block monitors whether the distance between every two
consecutive code labels of the incoming original sequence
increases by an approximately constant step.

III) If the VAC Block detects large distance differences (larger
than a predefined threshold value) between two subsequent
code labels, then probably noise above expected values is
struggling the original voice signal. As consequence, the
word in the recognition process will not be correctly
identified. To avoid this problem, the VAC Block discards
the last two consecutive code labels and switches to the
CLSS Block. In other words, the VAC Block switches from
the “Primary” to the “Alternate” Block after the execution of
an acceptance test that detects the violation of the following
rule:

Fundamental Rule: “the distance between two
consecutive code labels must always be
positive and approximately constant”.

IV) Once the recognition process is switched to the CLSS
Block, code labels are pseudorandomly generated. At the
same time, the fundamental rule described in (III) is checked
and if the distance between two consecutive pseudorandom
generated code labels does not obey this rule, they are
discarded by the VAC Block. In this case, another code label
is generated and the rule checked again. If the fundamental
rule is respected, then the code label is appended to the
original code labels sequence. By doing so, the original
incoming signal is then, “reconstructed”. This process is
repeated consecutively until the VAC Block switches back to
the Primary Block (Subsystem-1), which happens at every
10ms.

Once the reconstructed code labels sequence reaches
Subsystem-II, the goal of the “HMM” Blocks therein is to compute,
exactly as it was done previously by the “HMM” Blocks in Subsystem-I,
the probability scores of changing from one state to another in the
Markov chain. However, note that in Subsystem-II this probability is
computed for the reconstructed signal (in Subsystem-I, these
probabilities were computed for the original incoming signal, before the
reconstruction process).

Finally, the next step is the Decision Logic Block, which
chooses among the words on the process of recognition, the one with the
higher score, i.e., the one with the higher probability of occurrence (note
that the higher score must also be higher than a predefined threshold
value in order to be considered a “valid” word).

Discussions:
Note that as described above, due to the fact the code

labels generated by the CLSS Block have been generated
randomly, it is expected that there will exist noise in the
“reconstructed” signal as well. This is true because it is quite
probable that the random-generated observations sequence is
different from the one generated from the noise-free original
signal. On the other hand, it is also true that the noise present in
the “reconstructed” signal due to the random-generation process
is lower than the noise embedded in the incoming original signal.
As conclusion, in a given range (minnoise-signal, maxnoise-signal), it is
expected to have a positive improvement in the quality of the
voice signal.

In these considerations, “minnoise-signal” is the minimum
noise affecting the original incoming signal, below which the
random-generated code labels in the CLSS Block have no
improvement in the final signal quality (in this case, the SRS
operates correctly with or without the use of the CLSS Block).
Similarly, the maxnoise-signal is the maximum noise affecting the

voice signal, above which the SRS is no more able to operate
correctly (even if the CLSS Block is selected).

4. Experimental Results

This section presents a computation example that we
have developed to illustrate the proposed approach. With this
purpose, we implemented an SRS to recognize 4 words. The
system was fully described in the C language5. To train the
system, we used the database TIMIT, developed in a joint
cooperation between Texas Instruments Corp. and the
Massachusetts Institute of Technology (MIT) [17,18]. Also, we
have selected 100 people to pronounce each of the 4 words,
which resulted in a database of 400 reference words.

Table 1 presents the 4 words we have implemented
and trained the SRS, and summarizes experiment results for the
system operating in the ideal noise-free environment of a
laboratory. Table 2 presents results for the SRS behavior with
respect to different levels of noise affecting the input speech
signal.

The system was trained to recognize 4 words, each of them
represented by a different number of 10ms-duration code labels. More
precisely, we observed the minimum number equal to 41.26 and the
maximum equal to 82.12 code labels per word, as seen in Table 1. Fig. 5
shows the architecture of the system implemented. In this case, the input
signal indicated by “*” in Figs. 3 and 5 is represented by an average
sequence of 2328ms duration for 232,8 code labels: 4 words x 58.2 code
labels per word in average x 10ms = 2328ms overall speech time
duration.

Words *
Average Number

of Code Labels per
word

System confidence (%)
[frequency of which words are

recognized correctly]

She 41.36 98.00

Greasy 82.12 100.00

Dark 68.06 100.00

All 41.26 97.00

Average 58.2 98.70

* Sequence size: 58,2 code labels in average per word. Each code label
represents 10ms of continuous speech sound.

Table 1. Words used to implement and train the system, and the
respective system degree of success to recognize the correct
word. (Results for an ideal noise-free environment.)

Percentage of the voice signal
corrupted by noise * (%)

System confidence (%)
[frequency of which words are

recognized correctly]

60 81.75

50 87.50

40 92.00

30 95.00

20 95.75

10 98.50

Table 2. Preliminary results showing the SRS performance in terms of
recognizing the correct word for different noise levels affecting
the input speech signal.

                                                
5 Around 3000 lines of code: 2000 lines dedicated for the
recognition and training procedure; 400 lines for the signal A/D
sampling and filtering procedure; and 600 lines for interfacing the
system with the database TIMIT.
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Fig. 5. General block diagram of the SRS implemented and trained to
recognize 4 words. (Note that for 4 words implemented, n is
equal to 4.)

5. Final Discussions & Future Work

We have presented a new approach to minimize (and if
possible eliminate) the noise struggling voice signal in speech
recognition systems (SRS). The basic idea behind the proposed
approach is formalized around the traditional software-based
recovery blocks (SBRB) scheme found in the literature.
However, in our case we have modified the SBRB scheme
towards a hardware implementation and to the specific needs of
speech recognition systems.

Aiming to improve input voice signal quality, the
proposed approach is split in two steps: in STEP-I, the
algorithm performs in the “Primary” Block a first try to
recognize the words. If it succeeds, there is no need to move to
the second step (in the “Alternate” Block) since noise is under
acceptable values and the words were recognized with a good
confidence level.

If the system fails to recognize the word in STEP-I (a
fundamental rule of quality defined in Section 3.1 was not
respected), the algorithm moves to STEP-II. In this case, the
proposed approach rules that for each of the 10ms time frames
of the input voice signal whose rule of quality was not attained,
there will be a replacement by a 10ms time frame generated
randomly by a Code Labels Sequence Simulator (CLSS). At this
moment, we have a “reconstructed” voice signal whose
recognition score is recomputed at the end of STEP-II. Then,
one of the three possible situations may happen: the system
succeeds to recognize the good word, the system fails by
recognizing the wrong word, or the system aborts because the
minimum recognition score was not attained.

The proposed speech recognition system was fully
implemented in the C-language. The obtained results
demonstrate this is a very promising technique and indicate that
the next step of the research will be dedicated to a real case-
study. This case-study will be partitioned into hardware and

software parts and prototyped using programmable logic device
technology and dedicated DSP processor.
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