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Abstract - This article describes a vocal tract length normalization

(VTLN) procedure through pitch based frequency warping. This

procedure aim to reduce de inter-speaker variability, present in

speech signals. It is also described a method for coarticulation

phenomena compensation, that reduce speech signal variability due

to phonetic context. This procedure operates at the phonetic level

since makes a modeling of coarticulation events, and at the linguistic

level since these units lead to alternative pronunciation rules.

Inter speaker variability removal is performed by a traditional

speaker normalization method, which consists in expanding or

compressing the Mel bank filter bandwidth in order to normalize

the vocal tract length (VTL) of each speaker to a standard one. The

estimation of VTL is, in previous works, based on formant

information, but authors pointed out as an obstacle for better

results, the difficulty of formant frequency estimation. The method

presented in this paper overcomes such problem since we estimate

the warping factor (WF) through pitch. The recognition results

presented on this paper, for a telephone digit recognition task prove

that this procedure leads to similar improvements to those obtained

with traditional methods based on formant information.

I. INTRODUCTION

In speaker independent automatic speech recognition

(ASR) systems, speech models are trained making use of a

great amount of speech, pronounced by a great variety of

speakers as well. Each speaker has specific features, which

are not only related with physiological features, as length

and shape of vocal tract, but also with linguistic aspects

such accent, dialect, stress and environment. Due to these

speaker specific features, and due to the differences

between all speakers, speech signals arise to the system

with different acoustic features, resulting on models in

which spectral distributions usually have great variances

and therefore great overlapping through distinct

phonemes. This situation is an obstacle for ASR system

performance.

The effects caused by the variability of speech, in

addition to the adverse conditions of the environment,

make the greatest challenge for actual speaker independent

ASR systems. Generally, the sources of variability related

with the speakers can not be totally eliminated. It is

therefore necessary that ASR technology model efficiently

this kind of obstacle.

The present work is based on an efficient recognition of

connected digit strings. The process of speaker

independent recognition of connected digits through the

telephone, is a special and an interesting case for ASR. On

one hand this is a relative simple task, since the

vocabulary involved is small, on the other hand the system

must be extremely accurate since one wrong digit on a

string result on an invalid string.

To improve the distinction between recognition models

we implemented a method for coarticulation phenomena

compensation. This compensation is described on section

II. To reduce the variances of the spectral distributions of

models, produced by speakers with different features, it

was implemented a normalization method, described on

section III and IV. On section V it is reported the results

obtained with the implemented method.

II. COARTICULATION MODELING

The speech production mechanism is a temporal set of

articulatory actions to produce the sequence of phonemes.

For consecutive phonemes these actions overlap, leading

to coarticulation. In this situation, the vocal tract is

articulating a phoneme at the same time that is preparing

the articulation of the next one. So, the degree of

coarticulation is highly dependent of the pronunciation

rate. The acoustic realization of a set of sounds is greatly

related with the fact that our articulators can not move



instantaneously from one position to another, leading to

that some phonemes are only partially articulated.

The coarticulation is defined by Kirchhoff and Bilmes,

[8] as “a change in the acoustic-phonetic content of a

speech segment due to the anticipation or preservation of

adjacent segments”. According to these authors the degree

of coarticulation varies with several factors: with the

speaking rate; with the degree of syllabic stress and with

the quality of the vowel (central/peripheral and

strong/weak). The authors concluded that a highly

speaking rate associated with a low degree of stress leads

to a strong coarticulation.

In our work, we performed a study on sentence

sonograms to define the most frequent coarticulation units.

We considered the existence of coarticulation when there

were a clear continuity of the formants from one digit to

the neighbour. For example when the sequence dojS dojS

(“two two” in Portuguese) is pronounced with no

coarticulation, we have a sequence of four models (/doj/,

/S/, /doj/, /S/). In the production of the diphthong /oj/ there

is a lowering of the second formant followed for a growth.

The phoneme /S/ is characterized by an energy cloud.

Since /S/ is unvoiced there is no trajectory for F2 in this

period. After that appears again a lowering followed for a

growth of F2 (due to /oj/) and a new /S/. When dojS dojS

is pronounced coarticulating the first /S/ coarticulates with

the beginning of the adjacent dojS.  The trajectory of F2

for the first /oj/ remains but there is a perturbation of the

/S/ of the first dojS. In this period it is clear a continuity of

F2 from de first /oj/ to the second one, what make us

conclude that there was no pronunciation of /S/. Indeed,

the fact that following an /S/ exists a voiced consonant

conduct to /S/ appears like a /Z/.

On our sentence sonograms study we found many

coarticulation phenomena. Other example appears on the

presence of two adjacent vowels, which results on the

decay of one of them. This is called elision.

When the speech production has an absence of a clear

separation between the acoustic specific features of each

phoneme or sub word, probably coarticulation is present.

This situation makes more difficult the estimation of these

units because the frames correspondent to each model

won’t be rightly attributed. This contributes to the

construction of models with a high variance. To avoid this

problem we decided to add to our set of models four units

of coarticulation. These units are not the only existent, but

there are some that occur in a number that allows us an

accurate estimation. The most common coarticulation

units, and for that the selected ones are presented in table

I.

The phoneme /z/ appears when /S/ is followed by a

vowel, while /Z/ is when /S/ is followed by a voiced

consonant. /u-u~/ or /u-ojt/ are other cases of common

coarticulations.

Table I - Coarticulation units selected.

Coarticulated phones Resulting Phones

S……u~ z

S……ojt z

S……zEr Z

S……doj Z

u……u~ u-u~

u……ojt u-ojt

Since the pronunciation varies, if not considered, the

performance of systems degrades. Explicitly modeling

these pronunciation variations we could correct some

errors induced by speakers production variability.

The system acts at two levels: on the acoustic level

since coarticulation models were introduced and on the

phonological level since these new models originate

alternative rules of pronunciation.

III. SPEAKER NORMALIZATION PROCEDURE

Attempting to reduce the speech signal variability (due

to inter speaker differences) and produce significant

improvements on ASR performance, different techniques

have been investigated to normalize the parametric

representation of speech signals through the manipulation

of its acoustic parameters. One of the techniques, widely

used in speaker normalization, is the frequency warping

axis technique. This technique appears as an attempt to

normalize the vocal tract length (VTL) of different

speakers, reducing their influence on the spectral

parameters. Using this method, the acoustic parameters are

transformed by warping the speech signal in the frequency

domain. This warping can be performed in two distinct

ways. The first, which is proposed by [1],[11],[12] is

performed by compressing or expanding the speech signal,

in the spectral Fourier domain. The second one, proposed

by [2],[13] is performed by the compression or expansion

of the filter bank responses, used in MFCCs (Mel

Frequency Cepstral Coefficients) estimation, in the Mel

scale. Whether the warping is applied on the spectral

signal or directly on the filter bank the goal is similar: both

attempt to map the spectrum of a phoneme pronounced by

distinct speakers to a standard one. This mapping is

performed by a warping function that depends on a single

warping factor. The selection of this parameter and the

shape of the function is vital for the application success.

With regard to the shape a wide variety of functions were

proposed: linear like the work of Lee and Rose, [7];

piecewise linear as in Wegmann et all, [11]; non linear

like Eide and Gish, [1] or bilinear as in the case of Zhan

and Waibel, [13] and Fukada and Sagisaka, [2].

With regard to the selection of the warping factor there

are two main procedures: the selection based on

maximization of likelihood (ML), [7],[11],[13] and the



selection based on speaker specific acoustic parameters,

[1],[4]. The first one uses a predefined set of warping

factors and, following an iterative procedure based on ML,

selects the best WF for a specific speaker. The WF is

selected so that the probability of a set of acoustic features

(of a given speaker) is maximized in regard to an acoustic

model taken as reference. The second one selects the WF

using an approach based on the measurement of the

frequencies of the formants of the speaker, since according

to the authors the position of these reflects the VTL.

Several authors obtained better results using ML

criterion, however, the method based on speaker specific

parameters has the important advantage of being

computationally less expensive.

However the estimation of formants is liable to errors,

especially when the system works in adverse conditions.

In our work, and to overcome such problems we

selected the warping factor from pitch (F0).

IV. PITCH BASED FREQUENCY WARPING

It is somewhat intuitive that the estimation of the VTL

is supported by acoustic studies. However, as already

reported this directly estimation from the speech signal is

difficult since there isn’t a simple relationship between the

formants and VTL.

To deal with this situation Eide and Gish, [1] proposed

a method, which score conduct to significant

improvements in performance. Their proposal is based on

the warping function given by the equation (1) and

sketched in figure 1, where ks is the ratio between the

median third formant (F3) of a given speaker and the

median of F3 of all speakers of the train set.
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The preference on F3 is due to the fact that this formant

is the more stable, i.e., is less dependent of linguistic

information and therefore from the statistic point of view

is the more robust. Zhan and Westphal [12] also defended

this point. They expand the work of Eide and Gish, [1]

and make the normalization using the same warping

function but estimating the warping factor also from the 1
st

and 2
nd

 formants, not achieving better results with these

formants.

Our method makes use each speaker’s pitch to estimate

his vocal tract length, and perform normalization. This

procedure seems profitable to us since pitch is more stable

than F3 and it estimation is more reliable. Pitch

determination obliges to a voiced/unvoiced separation, but

this is also necessary on formant determination since it

does not make sense to estimate formants in unvoiced

frames.
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Fig. 1. - WF shape used for the determination of the low and high

frequencies of the Mel scale filter bank.

Since F3, when used as an indicator of normalization

leads to good results and since in our method we intend to

perform normalisation from F0 it necessary to analyse if

there is any relationship between these two features.

To do so we calculated F0 and F3 for each sentence.

The pitch was estimated through the algorithm AMPEX

[5], and formants through SFS, [10].

We made a scatter plot between the means and medians

of F0 and F3 and found a correlation factor of 0.45 and

0.3 respectively. Due to the fact this last value be

significantly below the first one we decided to use means

(instead of medians) as a determinative factor for

normalization.

In figure 2 it is presented the relation between F0 and

F3 means of 2454 digit strings (train and test set).

Fig. 2: Scatter plot between means of F0 and means of F3.

We observe that figure 2 seems to be composed by to

clouds, each one representing a gender. The left cloud

corresponds to sentences of male speakers, since F0 values

are under the standard speaker’s (160Hz), and the right

one of female speakers for the opposite reason. It is

therefore expected than F0 and F3 distributions follow a



bimodal distribution with each mode corresponding to

each gender.

On our work we use Eide and Gish’s function but

defined sk  with F0 instead F3. Since the relation between

3

3

F

F
 and 0

0

F

F
 are different, sk  will be affected by a value

that will be given by the expression (2), where 0F  is the

mean 0F among all speakers.
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The question is how to find α. Independently of the

speaker gender, each speaker has its own warping factor.

But, since one of the major factors of variability is due to

gender differences, we decided analyse two sets of

speakers, one of each gender, separately.

We computed warping factors for both sets and on two

distinct ways. On the first one, WF was obtained as the

ratio between the mean of the third formant (F3) of a

speaker and the mean of F3 of all speakers in the train set

(2300Hz). On the second one ks is the ratio between the

mean of pitch of the voiced set of a given speaker and the

mean of the pitch of a standard speaker.

The means were estimated using only voiced frames,

detected by a pitch detector.

For both cases the distribution of the warping

factors of the female set are above the male set one.

This allows us to conclude that F3 frequencies of

male speakers are under the female frequencies and

obviously the same happens with pitch. However, this last

distance is greater. We verified that the mean of pitch of

the female set is about 80Hz above the mean pitch of the

male set.

Comparing both distributions we verified that they have

similar shapes. This led us to implement a mapping

between the two distributions.

If the mapping were made according to the speaker

gender, we can easily find a set of points that make a

correspondence between F0 and F3, and find a function

that maps the pitch of a speaker on his F3. However our

method intend to normalize speakers besides its gender.

So we analyze separately the gender’s distributions, found

a set of points (one to each gender) that maps the

distribution of F0 on F3.

To obtain a mapping function gender independent, we

considered that under the standard speaker’s pitch

(160Hz) the mapping refers to male speakers and the

above from female speakers and made a 3rd order fitting

on these points. This mapping function is drawn in figure

3. The ordinate g(F0) establishes the value that F0 should

be warped to agree with the F3 value. This function

establishes α of the equation (2), that is α=g(F0).

Fig. 3. g function that establishes α of equation (2).

The normalization is performed in three distinct steps.

The first one consists on the determination of the mean of

pitch in voiced frames. Then we calculate the warping

factor through the equation (2), with α given by the

function g(F0) of figure 3. Finally, we change the upper

and lower frequencies of the Mel scale filter bank through

the function given by equation (1).

The warping function proposed is then:
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To not exceed the Nyquist frequency the warping factor

were restrict to an interval from 0.9 to 1.1.

V. EXPERIENCES

The tests of this work were performed using strings of

nine connected digits presents on a Portuguese speech

database, collected through the telephone network called

TELEFALA, [9]. The speech signals were recorded at a

sampling frequency of 8kHz and formatted with PCM-µ
law. The training set has 1012 digits strings and the test set

has 847. The number of female and male speakers is about

50% in both sets. Since each speaker utters a reduced

number of utterances, there is a high variability inter

speaker, not only related with physiological differences

but also differences related with geographic origins,

rhythm and style of production. The both sets were labeled

manually, based on phones and sub word units. The choice

of these units was based on an acoustic-phonetic study of

Portuguese digits. We found units acoustically well

characterized, which correspond mostly to syllables or

phonemes of the digits. Since there are much

coarticulation between adjacent digits there were

considered four coarticulation units, described in section

II. Analyzing the utterances of the database we found that

exists, beyond digits, other occurrences of non linguistic

events that was labeled as well. 18 phonemes and 4



coarticulation units were defined to describe the 10 digits

and models for these units were trained. Additionally, we

considered 10 other models for capture the statistical

properties of the silence, noise and out of vocabulary

words.

To model the phonemes we used continuous Hidden

Markov Models (HMMs) with left to right topology. The

train was performed using HTK 2.1,[14] software.

The acoustic parameters used were MFCCs, with

energy and the corresponding delta coefficients.

The recognition results are sex independent and are

presented in table II and correspond to models with 2 and

8 components of the Gaussian mixture for each HMM

state.

We named Coart Models to the experiences that

contain coarticulation models. We evaluate the different

procedures by comparing WER (Word Error Rate) and

SER (Sentence Error Rate) values. The improvements

presented are related to each test when comparing with the

baseline.

Table II - Recognition Rates.
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Baseline 2 7,1% 39,0%

Baseline 8 4,5% 27,9%

Coart. Models 2 6,7% 37,7% 6,9% 3,5%

Coart. Models 8 3,9% 24,1% 13,8% 15,7%

Normalization

based on F3
2 6,5% 36,7% 9,9% 6,1%

Normalization

based on F3
8 3,8% 23,1% 18,7% 20,4%

Normalization

based on F0
2 5,6% 31,6% 28,1% 23,1%

Normalization

based on F0
8 3,7% 22,1% 20,0% 26,2%

Modeling coarticulation events we achieved

improvements, with 2 Gaussian mixtures of 6.9% in WER

and 3.5% in SER and with 8 mixtures the results were

13.8% in WER and 15.7% in SER.

In what concerns to the normalization procedure, our

method not only reaches the results of the function

proposed by Eide e Gish [1] (normalization based on F3)

as outperformed them. The results of complete utterance,

with 2 mixtures show an improvement of 23.1% for our

method and 6.1% to Eide´s method faced to the baseline.

With 8 mixtures the results are even better, 26.2% for

normalization based on F0 e 20.4% for based on F3.

However the results with increased number of mixtures

did not accomplish the previous, leading us to conclude

that it will be necessary a fewer number of Gaussian

mixtures to model each sub word. Since the results of

recognition were superior it is expected that the sub words

models became more compact.

Although it is not present in table 2, the best results

were obtained with 17 Gaussian mixtures, with

normalization based on pitch. The digit recognition result

was 96.9% and the sentence recognition result was 81.6%.

Additionally we tested the method considering models

of entire word digits. In this case the results did not

evidence improvements over 0.8% WER and 6.6% SER

obtained with 20 mixtures.

VI. CONCLUSIONS

The proposed normalization method, which is based on

pitch, proved to be of great utility in the improvement of

performance of a 9 connected digit string task. The

method overcomes the dependency of the system

performance face to the reliability of formant estimation.

Gouvêa, [3], in his work, uses median of de tree

formants. He pointed out that the system performance only

stabilizes when each speaker data reaches 12s. With our

system we get a reasonable estimation of pitch after a

small set of voiced frames.

We also believe that formant estimation degradation is

higher in noisy conditions than pitch estimation.

The normalization based on pitch reached the results

obtained with formants. An improvement of about 26%

was achieved over the baseline performance with 8

mixtures. These results point that must exist a good

correlation between pitch and vocal tract length. This was

the idea that motivated this work. Female speakers have

shorter vocal tracts, therefore higher formants, and also

higher pitch frequencies.
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