Optical Packet Switching: new system for packet generation and highly selective header recognition

F. Rudge Barbosa, A. C. Sachs, R.. S. Ferreira, M. T. Furtado

Fundação CPqD, Campinas SP, 13088-902, Brasil

ABSTRACT

By using a highly selective RF filtering for optical packet header frequency recognition, we have obtained significant improvement in optical switching function. Ultrafast switching (ms timebase) is realized by using RF frequency tones, inserted in the optical packet that carries a digital payload. The RF header is detected at optical node input, and signals the node switching control, which instantly directs the packet to a prescribed output. The optical circuit is noise-free, has no crosstalk, and is extremely selective in RF frequency header detection. BER measurements for payload consistently yield figures as low as 10^{-12} . This system is also fully compatible with DWDM systems.

Index Terms – Optical networks, Photonic switching, digital communications.

INTRODUCTION

All-optical networks will require photonic switching [2], with opto-electric conversion only at end users. By using optical packets in the optical network, following the "connectionless" principles of IP packet routing a demand for optical packets and optical packet switching naturally comes into scene. Such network will require very fast packet switching functions throughout, with minimum amount of buffers in optical nodes. The absence of electronic processing provides unlimited bit rate with any data format. Under such context, the switching functionality is performed within the optical layer, without access to higher electronic layers in the network. On the other hand, traffic demands are also increasing considerably in access networks, because broadband services are rapidly expanding their base of customers [6]. For instance, future third and forth generation mobile systems will

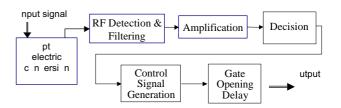
require packet radio services with diverse offering of bandwidth demands [7]. Besides mobile handsets, nomadic wireless services represent a great potential market for growing mobile applications. Optical fiber is the most appropriate medium to provide the necessary bandwidth to attend the increasing demand of end users with higher data rates in access networks. User traffic in access networks requires less aggregation than the core network, and usually present a burst-like characteristic due to a variable demand of services. The optical packet switching technology offers great potential to provide wider flexibility for bandwidth efficiency, scalability and finer granularity. But, optical packet switching still remains quite unexplored in optical access networks. In order to realize a practical implementation, simple and low cost switching nodes are required, operating with low loss, easy control and good throughput performance. Thus, the principle of self-routing of packets having header and payload architecture, is now extended to the optical layer, to supply this technological demand. Various techniques can be used to address header recognition [2,4], whether in time domain, code domain, frequency domain, or wavelength domain. In all cases, it is just the header, not the payload, that is processed in a network node. This means that the optical network is truly rendered transparent to information content, data rate or format carried by the optical signal; and the optical nodes are then immensely simplified, because only straightforward switching and routing performed. In previous works [1] we demonstrated generation, transmission and recovery of optical packets using a frequency header. In the present work we significantly improve the optical

switching function by totally redesigning the header recognition and switch control system. We also present further work implementing multiple packet generation and detection. Our approach is to find alternatives that may lead to practical solutions for next-generation packet based optical networks.

EXPERIMENTS

The node structure for which our optical packets are targeted is the 2x2 node, where two input ports are connected to two outports, and can be configured in parallel or crossed state [3]. Such node structure requires header detection and RF frequency tone recognition at node entrance, and precise generation of a control signal that will keep gate open for packets with correct tone. If tone is off or if tone is "wrong", gate will not open, and packet will not go to outport.

The experimental setup is shown in Fig. 1. The new design allows simultaneous generation of two optical packets having frequencies f_1 and f_2 . In this article we present both arms being alternately loaded with f_1 ; however, work with f_2 is underway and will soon be available. In both cases a high-capacity digital payload of 2,5 Gb/s is successfully transmitted with BER measurements consistently yielding results as low as 10^{-12} .


= Fig. 1, please see end of text. =

The relevant features or requirements that the opto-electronic control unit must have for proper switching operation with optical packets using frequency tone headers are:

- frequency selectivity;
- on/off clarity (on and off states clearly defined);
- packet integrity (no part of packet is lost or cut).

The new circuit that has been designed and implemented is now fulfilling all requirements. The previous circuit hitherto used [1], had only partial fulfillment of these requirements, though it served demonstrating basic principles in optical packet switching. Also, it allowed the development of experimental work in optical packet switching using a frequency tone header [1]. The main limitations were poor selectivity in frequency and poor on/off clarity; even though it strictly preserved packet integrity.

The optical packet switching control unit obeys the block diagram, shown below.

The new circuit, which performs all three requirements as staded above, has the following diagram in Fig.2. In this new configuration, not only the RF tone presence is detected, but the packet amplitude level is also taken into account. It is only when both are present that the AND logic allows control signal (TTL level) generation that will actuate on the switch. We have observed that the packet envelope detection occurs with ~2 ns risetime, which is basically the same as the packet risetime itself. Therefore this signal waits on for the RF tone recognition, which takes a few us to arrive; then decision occurs. This internal delay in the switch control circuit is different from the line delay of the optical packet in the delay fiber; that is precisely controlled and adjusts the packet arrival at the optical gate just after it opens.

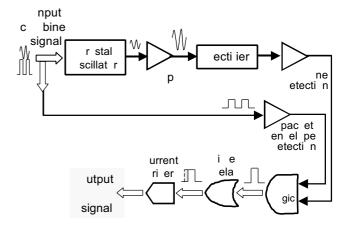
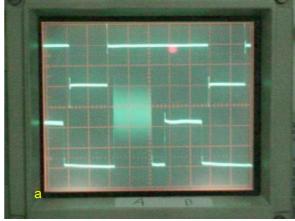
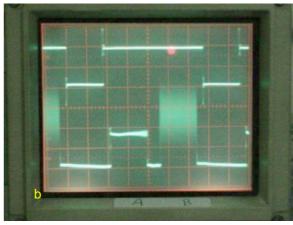


Fig.2 – Diagram of the new circuit for optical switch control.

The details describing generation, transmission and detection of optical packets in the optical circuit of the experimental setup have been given previously [1]. Here the main differences are, the simultaneous

double packet generation, and the improved switch control circuit based on a crystal oscillator, as described above. The new circuit guarantees a sharp frequency selectivity, perfect on-off clarity and packet integrity. Such results can be seen in Fig.3. The double packet configuration where both arms generate packets simultaneously, requires an additional delay fiber necessary to avoid packet overlap at the fiber amplifier.


It should be noted in the experimental setup, Fig. 1 that one and same fiber amplifier (EDFA) is shared by all packets, which simplifies the system and reduces cost. Moreover, the presence of the amplifier renders the optical node practically "lossless". The optical packet time duration can be any value between 2 and 4 μ s, and repetition between 6 and 12 μ s; adjustments are made to fit packets duration and repetition on oscilloscope screen for visualization and control.


RESULTS AND DISCUSSION

The oscilloscope traces in Fig. 3 show optical packets with combined RF tone and digital signal alternatively loaded on the short and on the long arm. Notice that both packets in both cases show sharp edges, due to both the fast rise/fall times of the optical packet and also to presence of guard times that guarantee packet integrity. These features are obtained by first, having a double decision circuit which in one section detects amplitude of packet envelope, and in another section detects the presence of RF tone frequency; and only when both conditions are met the circuit generates the TTL signal for optical gate control. Rise and fall times of the gate, which is an acousto-optic modulator, are $\sim 0.1 \mu s$. The adjustment of the guard times is realized by adjusting the length of the delay fiber, and by adjusting the control circuit output delay that maintains gate opening to ensure packet integrity. In others terms, a packet is not chopped in the node, once it enters the optical switch, it either passes through or is completely blocked (Fig.4).

Frequency selectivity is confirmed by varying the input RF tone with a precision signal generator. We obtain selectivity better than 0,1 kHz for RF tone frequencies in the range of several MHz, which allows for implementation of many tone frequencies or addresses in the optical network. The independent nature of the generation arms, can be used to create

several packets with different header tones simultaneously.

Fig. 3 - Oscilloscope traces showing optical packets with RF on state, and reference signals: upper traces in a) and b) are the electrical envelope negative pulse; lower traces are fully loaded packets in a) short arm, b) 2,5 μ s delayed arm.

We have also loaded the digital signal on one arm, and the RF tone on another arm, placing the header in one packet and the digital payload in another. Although this has the interesting appeal of pure tone and pure digital in separate packets, it has low bandwidth efficiency because one group of optical packets is just carrying the frequency tone header, when it could be carrying also high capacity payload. The pure digital signal cannot be considered an advantage compared to waste in bandwidth, because low BER transmission has already been demonstrated [1], with the presence of RF tone header. From [1] we conclude that an RF tone amplitude clearly less than

20% of the digital signal amplitude will not degrade significantly the error rate.

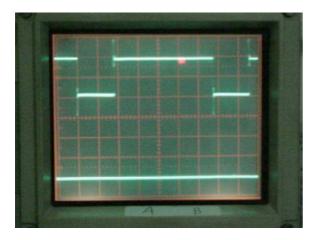


Fig. 4 – The RF *off* state (lower trace), showing as expected no signal at all.

CONCLUSION

We have presented in this work the improvement and evolution of optical packet switching, including generation, transmission, and header detection and recognition for switch control. The switching process is very fast, with few µs duration, and rise and fall times much faster <0,1 µs. A new system for packet recognition based on a crystal oscillator has proved to be extremely selective, with passband <0,2 kHz for RF tone frequencies in the MHz range. This improved feature leads to the possibility of many simultaneous header frequencies in the same network. Packet recognition is also improved with gate on-off states more clearly defined, preserving packet integrity by allowing guard times of 0,2 µs before and after packet. Next step is to implement simultaneous f_1 and f_2 operation, and apply to the 2x2 optical switch.

This work is supported by grants from Ericsson do Brasil S.A.

REFERENCES

- [1]F.R.Barbosa, A.C.Sachs, M.T.Furtado, J.B. Rosolem, "Optical Packet Switching: a transmision and recovery demonstration using an SCM header", SBrT'2001, Fortaleza, Brasil, Sept. 2001; and Special Issue, Rev. SBrT, June 2002.
- [2] A.Pattavina, M.Martinelli, G.Maier, "Techniques and Technologies towards All-Optical Switching", *Optical Netwk. Mag.*, pp.75-93, Apr. 2000.
- [3] F.R.Barbosa, D. Maia Jr., R.S.Ferreira, M.A.Remy, , A.C.Sachs, "Optical Packet Switching using 2x2 electro-optic and acousto-optic switches", submitted to SBMO 2002, Recife.
- [4] D.Chiaroni, "Status and Applications of Optical Packet Switching", *Proceeds.ECOC'2001*, paper WeM.1, Amsterdam, Sept. 2001.
- [5] I.M. White, Y. Fukashiro, K. Srikhande, M. Avenarius, D. Wonglumson, L.G. Kazovsky, "Experimental Demonstration of media access in HORNET A WDM Multiple Access Packet-Switched Network", *OFC* '2000, paper WD3, Febr. 2000.
- [6] J.Jang and E.K.Park, "Dynamic resource allocation for quality of service on a PON with home networks", *IEEE Commun. Mag.*, pp.184-190, June 2000
- [7] B.Sarikaya, "Packet mode in wireless networks: overview of transition to third generation", *IEEE Communications Magazine* pp. 164-172, Sept. 2000

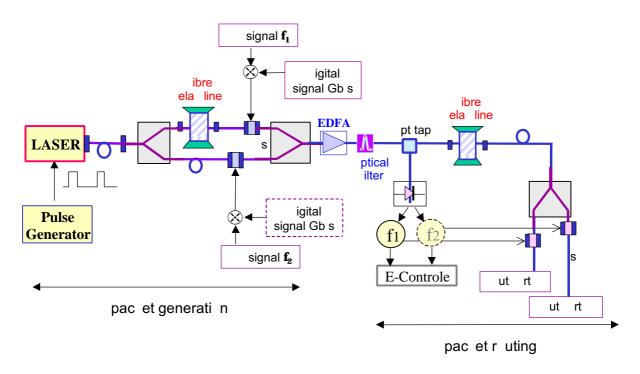


Fig. 1 – Experimental setup with two simultaneous different frequency header optical packets.