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   Abstract   The transient characteristics of optical phase-lock
loops intended for receiver applications in wavelength division
multiplexing systems is theoretically analyzed in this work. As the
locking bandwidth is controlled by a proper project of the feedback
loop, a WDM carrier within the locking range can induce the locking
of a slave semiconductor laser and be properly detected without the
need for optical filters. The other carriers are discarded by the loop
electronics bandwidth. The modeling takes into account the loop
feedback effect over the slave laser rate equations, allowing the
analysis of the temporal behavior of the locking process. The results
show the dynamics of the loop acquisition, considering distinct
values of initial frequency difference between carrier and slave laser
and different loop filter configurations.

   Index Terms   WDM, coherent systems, optical receivers.

I. INTRODUCTION

   The evolution of the telecommunication systems has
resulted in ideas and projects that combine high capacity
and low costs. One way to achieve those is through the
use of multiplexing techniques [1] in different physical
transmission mediums. After the development of the
Erbium doped fiber amplifiers (EDFA), the application of
the wavelength division multiplexing (WDM) technique
to optical fiber systems became economically possible. In
optical WDM, several channels allocated at different
optical wavelengths are combined and simultaneously
transmitted by an optical fiber, with full access to the fiber
bandwidth. Therefore, the system can support high bit
rates and offer, at same time, security and reliability.
   At the receiver end, the channels need to be isolated for
information recovery. Thus, samples of the combined
optical signal are filtered by optical filters centered at the
different channel carrier frequencies. Unfortunately, the
wide bandwidth of these filters is one of the causes for the
restriction on the maximum number of transmission
channels in WDM systems [1]. Recently, commercial
WDM systems can operate with up to 40 channels
separated by 100 GHz (∼ 1 nm) from each other [1]. In
laboratory, results show that the channel spacing could
drop to values slightly below 0.5 nm [2,3].

   The optical phase-lock loop (OPLL) is a feedback
optoelectronic circuit that controls the frequency and
phase of a local optical source (slave laser - SL) in relation
to those of a reference optical source (master laser - ML).
Fig. 1 shows the block diagram of a homodyne OPLL.
The signals from both lasers are coupled into the
photodetector, where they are mixed. The resulting
photocurrent is composed by two terms: a DC term,
generated by the total optical power reaching the
photodetector active area, and an AC error term, produced
by the phase and frequency differences between the lasers.
The photocurrent is then amplified and processed by the
loop filter. When semiconductor lasers are being used, the
loop filter output signal is combined with the SL bias
current for the SL phase and frequency control.

Fig. 1.  Block diagram of a homodyne OPLL

   Locking can only be achieved if the initial frequency
difference between the lasers lies within the so called
OPLL acquisition band. Under this condition, during the
locking process, the error term magnitude tends to
decrease after each feedback cycle as a result of the SL
tuning. When locking is acquired, ML and SL operate at
same frequency and a residual baseband photocurrent
maintains the SL laser frequency displacement in relation
to its initial value. The SL laser then responds in tune to
any ML frequency fluctuation. However, tracking is lost if
the fluctuations exceed the OPLL locking range. As the
characteristics of the acquisition and tracking only depend
on a proper feedback project, the OPLL locking range can
be designed to fulfill different system requirements.
   Due to the flexibility in the OPLL locking range design,
the OPLL technique can be applied to receivers in WDM
systems. In this case, the ML should be considered as one
of the WDM channels. If the channel frequency were such
that it induced the SL locking, the channel information
would be detected and decoded. However, if the
frequency difference between the channel and the SL were



outside the acquisition range, the channel would be
photodetected but filtered out by the loop electronics. This
behavior suggests that a given WDM channel could be
selected without the need for optical filters. Therefore, a
proper locking bandwidth project could allow the
reduction of the WDM channel spacing, resulting in a
potential increase in system capacity.
   The transient characteristics of optical phase-lock loops
intended for receiver applications in wavelength division
multiplexing systems are theoretically analyzed in this
paper. Firstly, a theoretical study of the OPLL technique is
conducted, where the OPLL analysis is adapted to take
into account the SL control through the laser rate
equations. This approach differs from the traditional
OPLL study [4,5]. Following, the simulation results for
the transient evolution of the acquisition process of an
OPLL are presented, considering two types of loop filters
and several initial conditions for the frequency difference
between lasers. Also, the effect of the loop propagation
delay on the locking performance is investigated.

II. THEORY

   The electric fields representing the ML and SL signals
can be written as:
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where, Emo and Eso, ωm and ωs, and φm(t) and φs(t) are the
electric field amplitudes, the angular frequencies and the
phases of the ML and SL, respectively. In a homodyne
OPLL, the photodetector is responsible for the
optoelectronic conversion and the comparison between the
ML and the SL signals (mixing). The latter is properly
accomplished when the optical signals are in quadrature
(π/2 rad detune). By assuming the same polarization state
for both fields, the total electric field on the photodetector
active region is Es(t) + Em(t). Thus, the instantaneous
photocurrent can be written as [6]:
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where Pm = ApEmo
2/2η and Ps = ApEso

2/2η are the ML and
SL average photodetected optical powers, respectively,
∆ω = ωm - ωs, θ(t) = φm - φs, η is the characteristic medium
impedance, Ap is the photodetector active area, and Kco is
the photodetector coupling efficiency. In (2), RPm + RPs

represents the DC photocurrent. However, as both the SL
frequency and optical power are controlled by the SL
current, the OPLL could misinterpret power oscillations as
variations in the phase or frequency difference. Thus,
balanced detection is assumed and the DC term discarded.
   To consider a more comprehensive OPLL analysis, it is
assumed that the photocurrent requires amplification.
Thus, the amplifier output voltage is:
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where Gamp is amplifier gain, Zin1 is the amplifier input
impedance, and Kpd = 2R(PmPs)½. The amplifier output
signal, Va, is then coupled into the loop filter. In this
paper, two loop filter configurations were considered: the
passive modified first order and the active second order
filters. Their transfer functions are given, respectively, by:
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where τ, τ1, and τ2 are time constants. By assuming the
filter input impedance as Zin2, the SL controlling current
due to the OPLL influence is:

( )[ ]{ } )(sen)( tfttIti pp ∗+∆= θω  (5)

where Ip = GampZin1KcoKpd/Zin2 and f(t) is the filter impulse
response. Generally, at this point, the OPLL theoretical
analysis is simplified [4-6]. The OPLL is assumed to be
locked (∆ω = 0) and θ(t) is considered small enough to
allow the linearization of (5). In the OPLL modeling
presented here, these usual procedures are discarded. As a
result, the transient study of the OPLL acquisition and
tracking becomes possible and the effect of the feedback
loop over the SL behavior can be more realistically
observed through the SL rate equations. In this
preliminary approach, the reduced form of the
semiconductor laser rate equations [7] was adopted for the
SL, excluding, for instance, quantum and noise effects.
Nevertheless, the use of the simplified rate equations is
sufficient to allow conclusions regarding acquisition and
tracking bandwidths (locking bandwidths), feedback
stability, and cycle slip behavior. The study of other
OPLL characteristics requires a more complete set of rate
equations and is left for future works. By considering the
SL operation beyond threshold, the carrier number rate
equation can be written as:

ph
e

GNN
q
I

dt
dN −−=

τ
  (6)

where N is the carrier number, I is the injection current, q
is the electron charge, τe is the carrier life time, and Nph is
the photon number. The relation between the active region
gain G and the injected carrier number is assumed to be
G(N) = Γvga(N – No), where Γ is the mode confinement
factor, vg is the modal group velocity, a is the gain
constant, and No is the transparency carrier number. The
photon number rate equation is given by:
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where τp is the photon life time and Rsp is the spontaneous
emission rate. The phase variation rate is related to the
laser injection current through:
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where αlin is the laser linewidth enhancement factor and Go

is the DC active region gain.

III. SIMULATION RESULTS

   The OPLL simulation routine uses the 4th order Runge-
Kutta algorithm to solve the SL rate equations. The ML
and SL phases and frequencies are compared by (2). An
error signal is generated and its AC part is coupled into
the loop filter after amplification. Assuming balanced
detection, the DC term is discarded. The filter output
signal, given by (5), is then summed to the SL bias current
and applied to (6). As a result, the rate equations interact
with each other, producing new SL frequency and phase
values. Those are compared again with the ML frequency
and phase values for a new feedback cycle. The routine is
repeated until the error signal tends to a constant value.
   For all simulations, the frequency responses of the loop
components were assumed ideal, except for those of the
loop filters [5,6]. It is intended to avoid this approach in
future simulations, as the acquisition in real OPLLs could
be seriously compromised. Although this study analyzes
particular OPLL transient characteristics for application in
WDM receivers, the laser simulation parameters adopted
here were for monomode 1.300-nm semiconductor lasers
[7]. However, the results could be extended to 1.550 nm
without significance loss. The simulation parameters are:
Pm = Ps = 1 mW, R = 0.8 A/W, η = 377 Ω, Kco = 1, Gamp =
1, Zin1 = Zin2 = 50 Ω, q = 1.6×10-19 C, Γ = 0.3, vg = 7.5 ×109

cm/s, a = 2.5×10-16 cm2, No = 1×108, τe = 2.2 ns, τp = 1.6 ps,
the SL bias current Io = 20 mA, Rsp = 1.28×1012 s-1, and αlin

= 5. The total loop gain k was estimated in 7.037×109

rad/s. For a damping ratio ξno of 0.707, τ1 = 71.3 ns, τ2 =
4.5 ns, and τ = 71 ps. The natural angular frequency for
the second order loop is ωno = 3.14×108 rad/s.
   Fig. 2 and 3 show the photocurrent temporal evolution
during OPLL locking acquisition for a passive modified
first order and an active second order loop filters,
respectively. In Fig. 2, the frequency difference between
the lasers ∆f is 280 MHz. In Fig. 3, ∆f = 69 MHz. It was
observed that those two particular values of ∆f represented
the maximum frequency detunings for which the OPLL
acquired lock in one phase transient. In both cases, ∆f
defines the OPLL lock-in range. A comparison between
the simulation and the results from approximate
expressions of the lock-in range, ∆ωl ≅  2ξoωno, for second
order loops, and ∆ωl ≤ k, for first order loops [4], show
reasonable agreement. It is also possible to observe that in
both cases, the photocurrent tends to a constant value after

locking acquisition. This residual current is necessary to
drive the SL and keep its frequency displacement from the
free-running value so that locking is ensured. The value of
θ necessary to maintain the residual current is known as
static phase error. As it can be seen in Fig. 3, for active
second order loops, the residual current is considerably
small. This characteristic, due to the high DC gain of the
active filters, results in an improved noise suppression
performance in relation to passive filters.
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Fig. 2.  The photocurrent transient response for the passive modified first
order loop inside the lock-in range, initial ∆f = 280 MHz.
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Fig. 3.  The photocurrent transient response for the active second order
loop inside the lock-in range, initial ∆f = 69 MHz.

   Fig. 4 and 5 show the time dependence of ∆f during
acquisition, for the same simulation parameters as in Fig.
2 and 3, respectively. The initial ∆f value corresponds to
the lock-in range limit. As the feedback loop controls the
slave laser emission, the value of ∆f decreases until
locking is acquired.
   If the frequency difference between the lasers is set to be
wider than the lock-in range, the total phase error reaches
an absolute critical value of π/2 rad during acquisition.
Due to this phase condition and according to (3), the SL
frequency is no longer pulled by the OPLL to match the
ML frequency, as the photocurrent reaches its maximum
absolute value. However, as time progresses, the total
phase error grows beyond π/2 rad and reduces the
photocurrent. As a result, the SL frequency starts to move
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back towards its free-running value, suggesting a positive
feedback effect. Under these conditions, as time and ∆f
continuously increase, a minor SL frequency displacement
can cause considerable variations in the total phase error
value after each OPLL cycle. The negative feedback is
restored when the total phase error reaches the next
multiple of π/2 rad. It is important to point out that, at this
moment, the instantaneous ∆f would be narrower than the
initial one as the ∆f relation with the total phase error
changed with time. The temporary loss of acquisition due
to the photodetector phase response is known as cycle
slip. The OPLL can acquire lock even with the occurrence
of cycles slips, as the instantaneous value of ∆f tends to be
narrower after each event and, consequently, to fall within
the lock-in range. Nevertheless, if the initial value of ∆f is
excessively wide, locking may never be acquired.
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Fig. 4.  The laser frequency difference transient response for the passive
modified first order loop inside the lock-in range, initial ∆f = 280 MHz.
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Fig. 5.  The transient response of the laser frequency difference for the
active second order loop inside the lock-in range, initial ∆f = 69 MHz.

   Fig. 6 and 7 show the photocurrent transient response
during acquisition for a passive modified first order and an
active second order loop filters, respectively, when the
initial ∆f is chosen outside the lock-in range. In Fig. 6, the
initial frequency difference between the lasers is 350
MHz. In Fig. 7, the initial ∆f = 100 MHz. As acquisition
takes place, the OPLL controls the SL in such a way that
photocurrent reaches its maximum absolute value Kpd =

1.6 mA before locking. At this moment, the total phase
error reaches π/2 rad, forcing a cycle slip. In Fig. 6 and 7,
the cycle slip is responsible for the photocurrent
oscillation between -1.6 e 1.6 mA. After the cycle slip, the
SL frequency is once again pulled towards the ML
frequency and locking is achieved with no further cycle
slips. It important to mention that both photocurrent
transient responses present a DC level, which is
responsible to keep the initial SL frequency displacement.
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Fig. 6.  The photocurrent transient response for the passive modified first
order loop outside the lock-in range, initial ∆f = 350 MHz.
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Fig. 7.  The photocurrent transient response for the active second order
loop outside the lock-in range, initial ∆f = 100 MHz.

   Fig. 8 e 9 show ∆f as a function of the time, for the same
simulation parameters as in Fig. 6 and 7, respectively. As
the acquisition takes place, ∆f is reduced by the feedback
control. However, during the cycle slip, ∆f increases.
When the OPLL recovers the SL frequency pulling, ∆f lies
already within the lock-in range and lock is acquired with
no extra cycle slips.
   As mentioned before, an extremely wide initial ∆f could
prevent locking to happen. The maximum initial value of
∆f for which locking can be acquired, even with cycle
slipping, is defined as the pull-in range. For the modified
first order loop, the pull-in range is given by k [6]. Fig. 10
shows the photocurrent transient response when ∆f = 1.12
GHz and the SL free-running frequency > the ML one.
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Fig. 8.  The laser frequency difference transient response for the passive
modified first order loop outside the lock-in range, initial ∆f = 350 MHz.
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Fig. 9.  The transient response of the laser frequency difference for the
active second order loop outside the lock-in range, initial ∆f = 100 MHz.
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Fig. 10.  The photocurrent transient response for the passive modified
first order loop inside the pull-in range, initial ∆f = 1.12 GHz.

   For a wide initial ∆f, the loop filter attenuates the SL
controlling signal and ∆f varies slowly. Cycle slips occur,
given the photocurrent the initial sinusoidal-like shape.
Yet, the curve presents a small DC content to keep the SL
laser frequency variation. As ∆f approaches the lock-in
range, the curve becomes more asymmetric, increasing the
DC content and resulting in a more efficient SL frequency
pulling. Even with cycle slips, the OPLL tends to acquire
locking after few more OPLL cycles. Fig. 11 shows the

time dependence of ∆f during acquisition for the same
simulation parameters as in Fig. 10. The slow initial
variation of ∆f is readily seen.
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Fig. 11.  The laser frequency difference transient response for the passive
modified first order loop inside the pull-in range, initial ∆f = 1.12 GHz.

   For initial ∆f values wider than the pull-in range, the
loop gain is insufficient to provide enough current to
control the SL frequency. The OPLL presents only a cycle
slipping behavior and the photocurrent oscillates
continuously. Fig. 12 shows the photocurrent for such a
situation, where ∆f = 2.8 GHz.
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Fig. 12.  The photocurrent transient response for the passive modified
first order loop outside the pull-in range, initial ∆f = 2.8 GHz.

   In the case of ideal active second order loops, the pull-in
range tends to the infinity [4] as a result of the large loop
DC gain. In other words, whatever the initial ∆f is, the
OPLL is already in acquisition. In real systems, however,
as the loop component characteristics are considered, the
pull-in becomes limited to finite values. Fig. 13 shows the
photocurrent transient response during acquisition for an
ideal active second order loop filter, for initial ∆f = 400
MHz and the ML free-running frequency > the SL one.
The latter cause an inversion in the asymmetric pattern of
the curve in relation to that of the Fig. 10. Nevertheless,
the same conclusions as those for the modified first order
loop are valid in this case.
   So far, the loop delay influence has been neglected.
However, the overall OPLL performance strongly depends
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on the delay introduced by the loop electronics and the
optical and electrical paths. Table I lists the lock-in range
results for the modified first order (MFO) and active
second order (ASO) loop filters, when the loop delay Td is
1, 2, and 3 ns. The delay effect is added to the analysis by
applying the convolution of (5) with respect to e-Td.
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Fig. 13. The photocurrent transient response for the active second order
loop outside the lock-in range, initial ∆f = 400 MHz.

   By comparison, the MFO lock-in range is seen to be
more sensitive to the influence of Td then that of the ASO,
suffering stronger range reduction in relation to the zero-
delay case. In general terms, these results suggest that
OPLLs will tend to loose their acquisition and tracking
abilities for longer values of loop delay. Fig. 14 e 15 show
the photocurrent transient response, respectively, for the
passive MFO loop filter, with Td = 10 ns and ∆f = 4 MHz,
and the ASO loop filter, with Ta = 20 ns and ∆f = 20 MHz.
In both situations, the initial ∆f would be well within the
non-delay lock-in range. However, the delay effect
prevents locking as even the pull-in range condition is
violated by the values of delay considered.

TABLE I   LOOP DELAY AND THE LOCK-IN RANGE

Td ∆ωl - MFO Reduction ∆ωl - ASO Redução
1 ns 124 MHz 55,7% 61 MHz 11,5%
2 ns 30 MHz 89,2% 52 MHz 24,6%
3 ns 4 MHz 98,5% 41 MHz 40,5%
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Fig. 14.  The photocurrent transient response for the passive modified
first order loop outside the pull-in range, initial ∆f = 4 GHz, Td = 10 ns.
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Fig. 15.  The photocurrent transient response for the active second order
loop outside the pull-in range, initial ∆f = 4 GHz, Td = 10 ns.

IV. CONCLUSIONS

   The OPLL transient characteristics for WDM receiver
applications were theoretically analyzed in this work. For
WDM systems, only one channel induces locking. The
others are filtered out by the loop bandwidth, reducing the
need for optical filters. As the OPLL locking bandwidth
depends only on a proper feedback design, the WDM
channel spacing could be made narrower as required. For
the loop filters adopted, the zero-delay OPLL locking
behavior was observed for different ∆f situations: inside
the lock-in and pull-in ranges, and outside the acquisition.
The results are in agreement with those of previous works.
The loop delay effect was also considered. In general, the
acquisition ranges became narrower for both types of
filter, suggesting that locking could be prevented for
longer time delay values. Future works should consider
the transient analysis of other OPLL characteristics such
as stability and noise suppression and their relation with
the loop delay.
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