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Abstract— Most work on Differentiated Services (DiffServ) handles
Quality of Service (QoS) provisioning on a per node basis, which assumes
that this strategy would provide QoS in the whole domain. Nevertheless,
this approach could fail in large domains with multiple flows aggregation
and unexpected input traffic. Therefore, provisioning techniques should
be used to avoid unpredicted overloads that result in QoS fluctuations. A
proposal using fuzzy controllers to reconfigure DiffServ nodes according to
ingress traffic and achieved QoS was presented in [1]. However, it is not
easy to specify fuzzy rule bases and membership functions that optimize
the controllers performance. Thus, we propose a methodology to choose
optimized fuzzy controller parameters using the Wang-Mendel and genetic
algorithms. Finally, we evaluate the performance of this methodology by
simulation of voice over IP applications in DiffServ domains.
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I. I NTRODUCTION

THE Differentiated Services (DiffServ) [2] is a proposal that
aims at providing Quality of Service (QoS) for a certain

number of service classes in the Internet. This is achieved
through service discrimination among flow aggregations per-
taining to these classes. The specification of a limited number
of classes increases substantially the scalability of this architec-
ture. As any other proposal for QoS provisioning in the Internet,
the DiffServ relies on resource allocation in network elements
of the DiffServ domain (DS domain). The main difference be-
tween other existing proposals, e.g. IntServ, is that these alloca-
tions are performed on a per-class basis. In a first stage, the IP
QoS model proposed by the DiffServ architecture assumes that
a static allocation is to be used. However, the unpredictability
and the randomness of the traffic entering in a DS domain make
the dynamic resource provisioning better than a static approach.

Dynamic provisioning implies using either signaling or re-
configuring mechanisms inside the DS domain. The former ap-
proach adds complexity to the core nodes, which reduces its
scalability. The latter relies on performance monitoring, which
allows detecting QoS faults, to determine the need of recon-
figuration. In a DiffServ domain with Policy-Based Manage-
ment, one network element contains the information regarding
the configuration of the different edge devices. Further, this ele-
ment stores the information pertinent to the performance levels
specified in the different SLAs (Service level Agreements) that
are to be supported by the DS domain. Based on these infor-
mation and performance monitoring, an element can control the
QoS for each service class taking appropriate actions in order
to minimize violations. Due to the complexity of these mecha-
nisms, most network operators prefers resource overprovision-
ing. This approach, however, presents high costs, as the full
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capacity is not used most of the time.
In this work, we support the use of dynamic provisioning

through a reconfiguration scheme, which is controlled by a
Policy-Based Management system that allows for administrative
decisions. In previous works [1], [3], we proposed the use of
fuzzy logic controllers for the dynamic reconfiguration of edge
and core routers. This reconfiguration allows for adjusting the
network provisioning according to the incoming traffic and the
QoS level achieved. This proposal showed good results on a
simple DiffServ domain with 5 nodes [3] and on complex do-
mains with different topologies [1].

The fuzzy logic is used due to the uncertainty associated with
ingress traffic estimation and to the non linearity and lack of
mathematical models able to estimate this traffic [4]. Lorenz
and Orda demonstrate in [5] that this uncertainty places addi-
tional constraints on QoS provisioning. A fuzzy controller is
specified by fuzzy sets definition (membership function) and a
set of rules (rule base). Nevertheless, as these values are chosen
by a designer, one cannot guarantee the correction and optimiza-
tion of fuzzy controllers for the considered problem [4]. Thus,
in order to improve fuzzy controllers performance we used a
genetic algorithm to optimize them [6], [7]. To validate this op-
timization procedure, we evaluate packet delay, jitter and drop
rate of voice-over-IP flows competing with non-sensitive delay
traffic in a DS domain controlled by the proposed scheme.

This work is organized as follows: section II presents a brief
description of related works on resource provisioning schemes
and on the use of fuzzy logic to improve QoS; section III shows
the fuzzy controller architecture and the methodology used for
optimization; section IV shows the simulation model; section V
shows the results of simulation; and finally, section VI presents
the conclusions and suggestions for future works.

II. RELATED WORKS

Recently, several schemes concerning resource provisioning
for IP networks have been proposed. The Tequila Project (Traf-
fic Engineering for Quality of Service in Internet, at Large
Scale) [8], [9], [10] aims at investigating provisioning tech-
niques, admission control and dynamic resource management
for DiffServ networks. The proposed architecture is composed
of two functional groups. The first includes the SLS (Service
Level Specification) Manager that is responsible for users’ sig-
nature and admission control, in addition to SLS monitoring.
The second functional group is responsible for resource man-
agement in long time scales (months or years). Other important
functions of this group are performed by the Policy Manager.
This element interprets policies defined by network operators,
implements this policy in the equipments and monitors their be-
havior.
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The RMD (Resource Management of DiffServ) framework
[11], [12] supports the use of edge-to-edge signaling for re-
source reservation in DiffServ networks. For this purpose,
this framework defines two new resource reservation protocols:
PHR (Per Hop Reservation) and PDR (Per Domain Reserva-
tion) protocols. The PHR protocol, implemented in all nodes
of the domain, is used to treat node attributes as an argument of
PHB (Per Hop Behavior) to perform resource reservation. On
the other hand, the PDR protocol manages all resource reserva-
tions at the domain level relying on the state of the reservation
performed by the PHR in all domain nodes. It is implemented
only on the edge nodes of the domain. The authors claim as
advantages of their proposal the simplicity and the low imple-
mentation cost to assure the characteristic of good scalability.

Liao and Campbell [13], [14] propose a provisioning strat-
egy composed by dynamic node provisioning and dynamic core
provisioning algorithms. The dynamic node provisioning al-
gorithm prevents transient violations of SLAs (Service Level
Agreements) by self-adjusting per-scheduler service weight and
packet dropping thresholds at core routers. The dynamic core
provisioning algorithm dimensions traffic aggregates at the net-
work ingress. This algorithm takes into account fairness issues
not only among different aggregates, but also within the same
aggregate whose packets take different routes in a core IP net-
work.

The use of fuzzy logic in telecommunication networks was
showed by Ghosh et al [15]. Several works have presented con-
trollers based on fuzzy logic as Li and Nahrstedt [16], that show
the use off fuzzy logic on the configuration environment but they
did not deal of network resources control. Cheng and Chang
[17] uses a fuzzy controller to configure the parameters in an
ATM network. Vasilakos and Anagnostakis [18] introduce a
fuzzy controller to define the best path to offer QoS guarantees.

III. F UZZY QOS CONTROLLER

In this section, we present the elements in the DiffServ
architecture, which are under control of fuzzy logic con-
trollers. We also describe the two different proposed controllers.
Then, we show the optimization procedure to achieve the best
parametrization of these controllers.

A. DiffServ Controller Architecture

The controllable elements in the DiffServ architecture are
shown in figure 1. In this architecture, all nodes have a sepa-
rate queue for each service class; a classifier places the packets
into the respective queue and the scheduler selects packets from
these queues for transmission in the output links. In addition to
these elements, the edge nodes contain a marker that (re)-marks
each packet, and a policer that keeps the ingress traffic on edge
node as contracted. The proposed architecture implements two
controllers: one that controls the queues and scheduler, which is
used in the core and edge nodes, and the other that controls the
policer, which is only used on the edge nodes.

B. Fuzzy Controller

The fuzzy logic was introduced by Lofti Zadeh [19] as a gen-
eralization of the boolean logic. The difference between these
logics is that fuzzy set theory provides a form to represent un-
certainties, that is, it accepts conditions partially true or partially
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Fig. 1. Controllable elements in the DiffServ architecture

false. Fuzzy logic is the best logic to treat random uncertainty,
i.e., when the prediction of a sequence of events is not possible.

In this work, we define a policy that gives maximum priority
to the service class designed to carry real-time traffic, namely
the EF class. The competing traffic is carried on the Best-Effort
(BE) class for which no guarantees are provided. The priority
of the BE class is reduced whenever there is reduction of the
quality of the EF class. To avoid BE traffic starvation, the band-
width reserved to this class should never be less than 10% of
total bandwidth. Many other policies could be defined just by
changing membership functions and the fuzzy rule base.

The proposed controller uses triangular and trapezoid fuzzy
sets because they are implemented with more efficient code [4].
We also made experiences with a Gaussian function, but the re-
sults did not justify the complexity added.

B.1 Scheduler Controller
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Fig. 2. Scheduler Membership functions: Queue Weight

The packet scheduler used in our architecture is WRR
(Weighted Round Robin). In this scheduler, queues are served
according to a configurable weight that can be changed during
network operation. This allows to have control of the bandwidth
assigned to each service class. The packet delay and discard rate
for each queue (class) can be controlled by changing this weight.
An example of membership function of schedule controller is
showed in figure 2. Other membership functions are: packet de-
lay in the EF queue and discard rate due to queue overflow in
the BE class. The output membership functions are also defined
as trapezoid functions by the same previous reasons. We used
the center of gravity defuzzification method, since it gives bet-
ter results. The output membership function gives the weights
assigned to each class in the WRR scheduler.
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B.2 Policer Controller

The objective of this controller is to reconfigure the policer,
which is implemented by a token bucket. Thus, the first input
variable in the controller is the number of tokens stored into the
bucket. The second is the number of EF packets discarded in the
policer. The third variable is the maximum delay of EF packets
inside the domain that indicates the reduction in ingress traffic,
reducing token bucket rate on policers in edge nodes.

The policer, however, cannot reduce the value of the bucket
rate since this violates an agreement. On the other hand, packets
in the EF class should not be discarded inside the domain. If
there are no more resources in the domain core, i.e. delays are
high, one should indicate a reduction of input rate in edge nodes,
reducing the bucket rate.

B.3 Rule base and Inference

Rule base is an IF-THEN rule group with fuzzy sets that rep-
resents the desired behavior of a fuzzy system. It can be defined
in agreement with the administrative policy.

B.3.a Scheduler Controller. A synthesis of the scheduler con-
troller rule base is presented below:
1. If the delay in EF queue is medium, then the queue weight
is increased by one level; e.g., if the weight was low it goes to
medium. And if EF delay is high the queue weight is increased
by two levels.
2. If the delay in EF queue is low and the packet discard rate
in BE queue is medium, then queue weight is reduced by one
level. And if BE packet discard rate is high the queue weight is
reduced by two levels.

B.3.b Policer Controller. A synthesis of the policer controller
rule base is presented below:
1. If the EF queue delay in core node is medium, then the po-
licer rate is reduced by one level. If EF queue delay in core
nodes is high the policer rate is reduced by two levels.
2. If the packet discard rate of BE class in edge node is high
and EF queue delay in core nodes is low, then the policer rate
is increased by one level. If packet discard rate of BE class in
edge node is high and EF queue delay is low, the policer rate is
increased by two levels.

C. Optimization

The fuzzy logic allows the representation of ambiguous val-
ues and produces a correct answer even with uncertain inputs.
However, an efficient behavior requests the definition of coher-
ent rules. A methodology is desired to produce coherent and
efficient membership functions and a correct rule base.

To improve the controller efficiency, we used optimization
procedures. For rule creation we used the Wang-Mendel algo-
rithm that constructs a group of coherent rules according to the
desired behavior. For the membership functions optimization
we used a genetic algorithm in order to find the best parameters
combination.

C.1 Rule creation with the Wang-Mendel algorithm

The objective of this method is to create a group of rules
according to a knowledge base. The Wang-Mendel method is
shown in [20]. The basic steps of the algorithm are:

1. Starting with the first value, it creates a rule of the form IF
¡var¿ IS ¡adj¿ AND ¡var¿ IS ¡adj¿ AND . . . THEN ¡var¿ IS ¡adj¿.
2. If this rule does not exist and it does not contradict any other
rule, it is added to the rule base.
3. If the rule already exists in the rule base it is ignored; how-
ever, its rank is increased.
4. If the rule contradicts some existent rule it is included in the
rule base, however with a contradiction mark and a rank counter
is started. At the end of the evaluation the contradictory rule
with higher rank is included in rule base and the rule with lowest
rank is discarded.

This methodology is useful to verify the consistence of the
rule base, avoiding the occurrence of contradictory rules, which
produce wrong results.

C.2 Genetic algorithm optimization

The genetic algorithm is based on Darwinian selection. The
use of genetic algorithm to improve fuzzy parameters was pro-
posed by Velasco [21], Cordón [22] and Herrera [6].

The genetic algorithm starts by creating a set of random solu-
tions (calledindividual) to the problem. The set of individuals
is calledpopulation. A score for each individual is found by
testing the result of the fuzzy controller against a desired value.
Some individuals with low score are replaced by new individuals
created from individuals with high score. This process continues
until a solution to the problem is found or some other end con-
dition (e.g., elapsed time or number of generations) is reached.
The individual in the population with the highest score is the
solution to the problem.

There are several ways for creating a new individual from ex-
isting individuals. One method is the mutation. A single parent
is selected, and the child is identical to the parent except some
small random change. If an individual is represented by a bit
string, mutation is often implemented by changing the value of
a random bit from zero to one or from one to zero. Another re-
production method is crossover: two parents are selected, and
the new individual is created by mixing their genes. For exam-
ple, if an individual is represented by a fixed-length string of
characters, a crossover point is chosen. The characters before
the crossover point are selected from the first individual, and the
characters after the crossover point are taken from the second
parent.

Our scheduler fuzzy controller provides the WRR weight, that
is not the actual function to be optimized. The variable that will
be optimized is the edge-to-edge delay, produced only after a
simulation. Then we use a simulation trace with controller pa-
rameters and actual delay as a knowledge base to the genetic
algorithm. After a series of interactions we obtain a set of pa-
rameters that optimizes the controller.

IV. SIMULATION MODEL

The simulation model consists of EF (Expedited Forwarding)
and BE (Best Effort) classes sharing bandwidth on a DiffServ
domain. The EF cllas is suitable for real-time applications, like
voice over IP, as it offers low delay and jitter, and assured band-
width. The BE class does not offer any guarantee and it is likely
to transport the most part of the traffic of IP networks. It is used
to compete with the EF class traffic.
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A. Simulation Environment

The platform used was the Network Simulator (NS), version
2.1b8 [23]. The fuzzy library used in this work was developed
with the JFS tool from Mortensen [24]. This tool provides an
interface for prototype development (specification of member-
ship functions, inference rules and the defuzzificator), an initial
verification of the model and optimization tools. The C code
generated by this tool is compiled and linked to the NS.

B. Simulation Scenario

The voice over IP application is modeled with CBR and ex-
ponential On/Off traffic over UDP. Voice traffic is classified into
EF class and the competing traffic, also CBR/UDP, is classified
into BE class. The topology used is shown in figure 3. It is a
DS domain composed of 40 nodes, where 30 core nodes (nodes
0 to 29) and 10 edge nodes (nodes 30 to 39). There are 5 ingress
edge nodes (nodes 30 to 34) and 5 egress edge nodes (nodes
35 to 39). This topology was created with the gt-itm package
(bundled in NS) [23].
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Fig. 3. Simulation Topology

The number of voice traffic sources (EF class) changes dur-
ing the simulation time of 30 minutes. This behavior forces the
controller to operate into a real situation. The number of voice
sources varies according to an exponential distribution with the
following active/inactive periods given in seconds: (120,60),
(60,30), (180,60), (60,20).

Each CBR voice generates a 64 Kbps traffic rate (PCM chan-
nel). This does not include the IP overhead, which gives an
actual rate of about 80 Kbps. In On/Off source, we use 64 Kbps
peak rate with burst time of 400 ms and idle time of 600 ms,
which gives an average rate of 25,6 Kbps. The size of the packet
is 576 bytes in both cases. Using the CBR traffic, the number
of sources varies from 0 to 150 active sources. In the On/Off
traffic scenario, the number of sources varies from 0 to 300 ac-
tive sources. In both scenarios, we use 150 and 300 competing
BE/CBR sources with rate of 64 Kbps.

The delay of each link of 2 Mbps is 10 ms. All queues have
a maximum size of 50 packets, which gives a maximum delay
of 100 ms in each node. The simulation model uses a WRR
scheduler, Drop Tail queues in both classes and Token Bucket
policer for EF class (the BE class is not conditioned).

C. Conventional controller

With the aim to compare and validate our approach, a conven-
tional digital controller was defined. With the input traffic sce-
nario used here, a domain without any controller is clearly worst
than the one with a fuzzy controller. This controller presents the
following characteristics:
1. If the delay average of the last three samples surpasses a cer-
tain value, it calculates the slope of the adjusted line for those
three points. This slope is applied to the queue weight in the
scheduler, which increases the EF class rate.
2. If the delay average of the last three samples is below a cer-
tain value, and the BE queue drop rate is high, it calculates the
slope of the adjusted line for those three points (that should be
negative). This slope is then applied to the output queue weight
in the scheduler.

This controller uses the same sample period used on the fuzzy
controller.

V. RESULTS

In this performance evaluation the following performance
metrics were evaluated: percentile of edge-to-edge delay and
jitter in EF class and discard rates in the EF and BE classes. For
each evaluation, we used CBR and exponential On/Off traffic.
We show the tables of the DiffServ domain without controller,
with a conventional controller and with the proposed fuzzy con-
troller. All simulations start with initial scheduler configuration
with 50% of the bandwidth for each class. To eliminate simu-
lation results with an empty network, we start collecting results
30 seconds (warmup time) after the beginning of the simulation.

A. Result of the Optimization

After optimization procedure was executed, we could verify
the result comparing EF traffic delay, with CBR and On/Off traf-
fics. Figure 4 shows the graph of edge-to-edge delay of a EF
flow using CBR traffic. It compares the original fuzzy controller
(without optimization) and the optimized fuzzy controller (after
optimization with genetic algorithm). Figure 4 shows the graph
of edge-to-edge delay using On/Off traffic, comparing original
and optimized fuzzy controller. Both graphs show an improve-
ment in QoS, as we expected.
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B. Edge-to-edge delay and jitter in the EF class

We show the simulation results by evaluating the percentile
of delay and jitter for EF flows. We compare these metrics for
the optimized fuzzy controler, the conventional controller and a
DS architecture with a static configuration. Table I and II shows
the delay and jitter of CBR and On/Off traffic in domain.

TABLE I

PERCENTILE OFEF DELAY (msec)

Traffic Avg. Per 50 Per 90 Per 95

CBR Without 198.7 201.5 239.0 249.9
CBR Conventional 43.9 43.1 65.0 70.2
CBR Fuzzy 33.2 32.2 52.4 56.4
OO Without 159.3 151.4 182.3 184.2
OO Conventional 23.4 21.6 38.5 47.7
OO Fuzzy 9.2 8.9 11.8 12.5

TABLE II

PERCENTILE OFEF JITTER (MSEC)

Traffic Avg. Per 50 Per 90 Per 95

CBR Without 19.8 0.0 71.9 72.1
CBR Conventional 1.7 0.0 0.0 0.0
CBR Fuzzy 1.0 0.0 0.0 0.0
OO Without 13.8 6.8 34.2 36.4
OO Conventional 12.0 9.0 26.9 35.5
OO Fuzzy 2.8 2.2 5.0 5.9

C. Discard rate on the DiffServ Domain

Table III shows the packet discard of the voice traffic in the
EF class. We may notice a decrease of the EF discard with fuzzy
controller for both traffics comparing the experiment with con-
ventional controller and without any controller. Table IV shows
the packet discard on default traffic in the BE class. In this situa-
tion the BE drops increase with fuzzy controller. We can see that
fuzzy controller gives better results evaluating On/Off traffic.

TABLE III

EF DROPS IN DOMAIN

Controller CBR On/Off

Without 669797 3899233
Conventional 2138 54741
Fuzzy 15 415

TABLE IV

BE DROPS IN DOMAIN

Controller CBR On/Off

Without 2446937 5040731
Conventional 3114725 6442433
Fuzzy 3116753 6462221

VI. CONCLUSION AND FUTURE WORKS

In this paper, we showed a methodology for dynamic resource
provisioning in a DiffServ architecture. The use of fuzzy logic
improves the handling of inaccuracy and uncertainties of the
ingress traffic into the domain.

The use of optimization tools, as Wang-Mendel and genetic
algorithms, give us better controller parameters, independently
of the designer ability. The use of actual configuration param-
eters, got during simulation as knowledge base for the genetic
algorithm gives a good optimization. This produces better re-
sults even for different topologies and traffic patterns. The con-
troller has a low complexity, which maintais DiffServ scalability
characteristic.

As future work, a new controller will be defined including
support to other DiffServ classes, like AF(Assured Forwarding).
This class has a different philosophy, forcing the controller to
deal with variables different from those considered in this paper.
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