
Jorge F. A. da Costa is with Departamento de Engenharia Ele trica and
Sergio V. Fialho is with Departamento de Engenharia de Computacao
e Automacao, Universidade Federal do Rio Grande do Norte, Natal-RN,
Brazil, 59072-970. PABX: +55 (84) 215-3999.
E-mails: flavio@cdiauto.com.br, fialho@pop-rn.rnp.br.

Network Management Using Mobile Agents

Jorge F. A. da Costa, Sergio V. Fialho

Universidade Federal do Rio Grande do Norte, Natal RN, Brazil

Abstract 〱 This paper proposes a mobile agents based framework to
implement the management of computer networks. The traditional
approach used by SNMP is based on a highly centralized topology.
For complex network computers, such a topology may cause
overload conditions in the use of network resources during
management activities. The adoption of mobile agents can provide
for the lack of a manager-manager communication mechanism in
the SNMP environment. A basic environment using the Aglets
Workbench was developed, where a Mobile Agent was capable of
carrying the SNMP management software and install itself in
previously chosen machines in a net. Some tests were performed and
they confirmed the viability and convenience of the proposed
solution. Starting from the implemented framework, it is possible to
build a complete system for Computers Network Management.

I. INTRODUCTION

he most widespread technology for computer
network management uses the SNMP protocol. Its

currently used version relies on a centralized management
topology, meaning that only one station concentrates all
the managed information produced by hubs, switches,
routers and even servers and workstations. The newest
versions of SNMP foresee a distributed management
framework, introducing manager-to-manager
communication capabilities. However, none of those
protocol versions are available in any of the several
devices and services produced at the moment. So, the
initial scheme of a highly centralized network
management framework is maintained.

An alternative foreseen to implement remote
management in the context of the present version of
SNMP is the RMON MIB. It uses probes, installed in
LAN segments, to obtain information from SNMP agents,
before sending it to the central manager station.

This work proposes a more thorough alternative to the
use of that technology, and demonstrates the viability and
convenience in the use of mobile agents for network
management purposes. These agents can also be provided
with AI techniques to implement advanced network and
computer management capabilities. In the following it is
presented some of the advantages of this approach:
• the network does not become overloaded, because the
management activity is implemented in a distributed way
[1], by means of several managers installed by the mobile
agents in equipments spread throughout the net. These
agents can recover the locally monitored information,
filter them and return to the central manager node just
what really matters.

• it doesn't depend on the installed hardware/software,
such as the RMON MIB
• it may be easily updated because it is based on software
• the control can be centralized in any point of the net
where the system is installed.

In the next section, it is introduced the mobile agents

concept, showing some of the most used agents platforms.
The Aglets platform will be described in more detail,
along with its main characteristics and advantages. In
section III, the Agent Based Management and its
associated execution environment are introduced. The
results obtained are described in the fourth section.
Finally, in section V, the major conclusions and
perspectives for future works are discussed.

II. MOBILE AGENTS

Agents are software programmed to accomplish certain

tasks without users intervention. According to Bieszczad
[2], mobile agents are self-contained software pieces that
are capable to autonomously migrate inside a net. In this
paper, a manager-agent interaction model, similar to the
client-server model and shown in Fig. 1, was used to
depict the dynamics adopted by agents in its environment.
In this model, there is a program that performs the
manager function of coordinating the agents work. On the
other hand, the agents execute the tasks cooperating with
each other and with the manager. The latter is responsible
for collecting and processing the data received by the
agents, acting as a server.

Fig. 1. The Manager-Agent Cooperation Model

T

An agent migrates in a distributed environment from an
agency to another. According to [3], an agency represents
a ” logical„ place in the distributed system. When an agent
migrates, its execution is suspended in the original agency
and the agent is transported (i.e., code, data and execution
state) to another agency where the execution is continued.

Some of the possible applications for the mobile agents
are:
• Searching of information in the Web or in a database
• Parallel Processing of scientific data
• Variable data supervision applied to control purposes
• Network management

Techniques of Artificial Intelligence can be embedded
in an agent to improve its autonomy degree [4], so that the
agent can react to the environment conditions and to learn
from them.

In the next sub-sections, some issues on mobile agents
execution and its main characteristics are shown. Aglets
Workbench (AWB) will be presented in more detail,
because it was the platform chosen for the development of
this work. A more complete and current list of mobile
code systems can be found in [5].

A. Odissey

Developed by General Magic, it is considered the

successor of Telescript. Odissey [6] is constituted by a
group of Java libraries and it uses RMI (Remote Method
Invocation) as its transport and communication interface.
The Odissey security is limited to the one provided by
Java. However, General Magic plans to incorporate some
Telescript security mechanisms into Odissey.

B. D�Agent

Developed in Dartmouth College, Agent TCL is based

on TCL, that is an interpreted script language initially
developed to Unix systems. It was ported to another
languages, such like Python, Scheme and Java, and
changed its name to D�Agent [7]. When traveling from a
host to another one, a pro-active migration mechanism
allows the transfer of the D�Agent command shell also.
The security implemented in D�Agents consists of the
possibility to encrypt the agent that is being transferred,
by means of Pretty Good Privacy (PGP) or of the
SafeTCL language.

C. Agents for Remote Access (ARA)

According to [8], ARA is a platform for agents able to

move freely and easily without interfering with their
execution, utilizing various existing programming
languages and existing programs, independent of the
operating systems of the participating machines. As seen
above, ARA isn�t really an execution environment for
agents but a pattern in which we can build our agents. It

provides the system-level facilities to execute and move
programs, let them interact and access their host system,
all in a portable and secure manner.

D. TACOMA

TACOMA (Tromso And COrnell Mobile Agents) [9] is
similar to D�Agents, because it too is an extension of the
TCL language to provide support for mobile code
systems. It supports agents applications developed in
several languages, like Perl, Phyton, Scheme and C.
Security in TACOMA is based on two different
mechanisms: a list of reliable hosts, where agents will be
accepted from, and the confinement of the agent execution
to a reserved part of the machine file system.

E. Aglets Workbench (AWB)

AWB is a platform for agents development [10] totally

written in Java and developed by the TRL Group, a
subsidiary of IBM Japan. It possesses as main
characteristics the development based on patterns, that is,
models of pre-written classes from which is possible to
extend and to create a new agent fast and easily. AWB is a
Open-Source tool and its API was approved by a
standardization committee.

The platform independence is one of its merits. The
agents can run in any machine that implements a Java
Virtual Machine, not mattering what is the installed
operating system, allowing a great exchange of agents
over several platforms.

The communication among the agents is processed
through a message passing mechanism [11]. The messages
can contain any object type allowed by the Java language,
from a data file to a class containing a new Aglet that may
be transmitted along the net.

AWB implements the agents mobility by means of the
Aglets Transfer Protocol (ATP), based on RMI, and in the
objects serialization, both native resources in Java. The
serialization allows the translation of the heap image of an
Aglet in a sequence of bytes. The stack and the
instructions counter of the Aglet threads cannot be
serialized. That limitation happens, due to the Java Virtual
Machine (JVM) architecture, because it doesn't allow the
access and the direct manipulation of the program stack.
That is an intrinsic feature of Java aiming at the
reinforcement of the language safety. That is to say, when
an Aglet travels from a host to another, its data will be
maintained but its execution state will return to the
beginning.

 Included in the AWB package, there is the Tahiti
Server that is responsible for the agents authentication and
management. Tahiti will be described in the following.

E.1 Tahiti Server

The agents developed for AWB need a manager
ambient in which they can be created. This environment is
known as the Tahiti Server which implements a graphic
interface for the AWB Daemon class. As it can be seen in
Fig. 2, Tahiti allows to create, clone, dispatch and to
destroy agents, all in an integrated execution environment.
Still, it is possible to obtain information on the agents
parameters (author's name, contact e-mail, and other) and
bring it back to the origin host.

A demand to execute the aglets in an external ambient,
like Tahiti Server, comes from the need of implementing a
security politics that implements support for cryptography
and authentication, capable of denying host access to
agents that doesn�t own recognized credentials. There are
two categories of agents: the trusted (reliable) and the
untrusted (unreliable) ones. One can define safety levels
desired for each category. The permission levels include
from hard disk access, stepping through access to certain
host internal ports and going to access to the external net.
All the items can be configured individually and in
different categories.

Fig. 2. Tahiti Server running HelloAglet

III. AGENT BASED MANAGEMENT

As an alternative to a centralized management model, a

framework for distributed management using mobile
agents is proposed herein. In this framework, agents
follow the Master-Slave paradigm with bi-directional
communication mechanisms between them. The chosen
system for agents deployment was the Aglets Workbench.
In the following, the main reasons for this choice are
presented:

• it is a mature architecture and takes advantage of the
extensibility and reusability features of the Java
language,

• it uses the native JVM Security Manager allowing a
fine-tune adjustment of the permission rules,

• it adopts the open-source development model supplying
the opportunity to alter the source code in agreement
with the project needs,

• it is possible to easily implement an WEB interface for
the communication to Tahiti Server.

Fig. 3. Communication Scheme in the Master-Slave pattern

The Fig. 3 shows that the message exchange between

Master and Slave agents occurs in a slightly different way
from what was initially presented in Fig. 1. Now, the
Slave agents communicate only with their respective
Master, and the Masters can change messages with each
other. This approach was used because it facilitates the
coordination and the delegation of tasks, by allowing a
better balance of the necessary amount of agents present
in the net.

In small nets, just one Master agent is sufficient. As
more nodes and sub-nets are added to the backbone, new
Master agents may become necessary and can be
introduced in the net. The main Manager Master may
perform a cloning of itself and install it in another host,
that will become responsible for the management of that
specific sub-net. This feature offers high scalability allied
to a good performance, because the agents are not
required to carry great amounts of code or use a lot of
memory, making it a good example of the use of the
"divide to conquer" paradigm.

The SNMP interface chosen for the agents development
was the SCK (SNMP Construction Kit) [12] library. That
package owns a compact API (Application Programming
Interface), which is easy to understand and is adherent to
the open code philosophy. The SCK library implements
the basic GET and SET SNMPv1 operations, defined in
RFC 1157, besides of supplying Java Beans components
for the construction of user friendly Graphic Interfaces.

IV. THE MANAGER AGLET

To exemplify the viability of the proposed framework, a

Manager aglet was implemented. It will use a Manager
Slave aglet in a nested topology, according to the Master-
Slave hierarchy. The Manager Master sends the Manager
Slave aglet to a remote host. When arriving at its destiny,
the Slave Aglet becomes responsible for the management
of the SNMP agents situated in its actuation area. This
Manager Aglet example was based on the FingerAglet,
included in the AWB package. Its functionality was
extended by adding the SCK library, making it capable to
monitor SNMP agents.

For simplicity reasons and simulation purposes, the
whole test environment was reduced to just one only
machine. The machine operating system was Windows
2000, running Tahiti Server and the SNMP service. When
the Manager Master dispatches the Manager Slave, the

Master
Master

Slave

Slave

Slave

Slave

destination address supplied is the loopback IP address
127.0.0.1. This will cause the return of the Slave aglet to
the same system. That aglet will then perform the SNMP
queries on the same IP address (local machine) which is
running the SNMP agent. When job is finished, the
Manager Slave goes back home and delivers the retrieved
data to the Manager Master. The Java Classes used in the
Manager Aglet implementation are described in the
following.

A. Manager Class

This Class is used to retrieve local user information

from a remote aglet server (Tahiti). This information
includes the name, organization, email address, and the
local time at the remote server.

Given an ARL (Agler Resource Locator) it will
dispatch a slave (an object of the ManagerSlave Class) to
retrieve local user information. The slave will return with
the collected information ready to be displayed by the
master.

B. ManagerWindow Class

This Class produces a main window for user interaction.

Through it, the human user may choose the destination
address to where the ManagerSlave Aglet must be sent, as
shown in Fig. 4.

Fig. 4. The initial Program Window

It is possible to recall the addresses stored in the Tahiti

Server AddressBook. The Aglet status is shown in the
bottom Text Area. The Go button is used to dispatch the
ManagerSlave aglet and the Quit button terminates the
program.

C. ManagerInfo Class

The ManagerInfo class encapsulates the data of interest

inside a Java Object, which contains several data Strings
(chains of characters). The ManagerSlave uses
ManagerInfo to deliver data to the Master Aglet.

This class is transported in the form of a Java object,
translated into bytecodes, by the AWB message passing

mechanism. This procedure increases security, since data
is not transported in plain text format, as it does with the
SNMP protocol, hindering the action of sniffers infiltrated
in the net.

D. ManagerSlave Class

Once installed at its destiny, the ManagerSlave Aglet

performs a query on the system properties, supplied by
JVM, such as the logged user name, the operating system
version and the host local time.

Similarly, the ManagerSlave Aglet makes a SNMP
query on the MIB objects, for instance the object
1.3.6.1.2.1.1.1.0, which stores the system description
(sysDescr) in ASCII format. After retrieving all those
information, ManagerSlave Aglet encapsulates everything
in the FingerInfo object and returns to its Master server.
When arriving there, it delivers the retrieved information
to its Master Aglet, by means of a message that contains
the ManagerInfo object. The Master Agent processes that
message and exhibits the result on the Main Window
(ManagerWindow), as shown in Fig. 5.

The top Text Area exhibits the data delivered by the
ManagerSlave to the Manager Aglet, in a user friendly
way. The System Description field was obtained from the
SNMP agent, and the other data was taken from the JVM's
System Properties, by the ManagerSlave aglet.

The tracking information is found in the bottom Text
Area, where is possible to follow the Slave Aglet steps
and its life cycle.

Fig. 5. Result of a Manager Aglet consultation

V. CONCLUSIONS

It was demonstrated herein the possibility to accomplish
a distributed network management by using mobile
agents. A Manager Agent was developed to travel to a
certain host and collect local information, including those
made available by the SNMP MIB in that host.

One may improve the agents autonomy, by adding some
techniques of Artificial Intelligence, embedding
cooperative communication mechanisms in them. This
will lead to an intelligent distributed management system.

Indeed, this work is being continued and presently it is
under study which AI techniques are the best suited to be
encapsulated in the mobile agents. Also, it is under
development an improved version of the user interface, in
order to display management data in a more friendly way.

The distributed management model will eventually
supplant the current centralized model along the next
years. As computer networks keep growing, with more
and more terminal equipments and handhelds running
TCP/IP being added to them, sometimes in a dynamic
way, it becomes necessary the installation of a robust
management system, capable of dealing with those
factors. The Distributed Management framework using
Mobile Agents fits most of these needs and requirements,
still, it allows a greater flexibility, because the Agents can
be endowed with intelligence and be able to adapt
themselves to the environment conditions.

REFERENCES

[1] O�Malley, Scott A. and DeLoach, Scott A. Determining When to

Use an Agent-Oriented Software Engineering Paradigm ,
Proceedings of the Second International Workshop On Agent-
Oriented Software Engineering (AOSE-2001), Montreal, Canada,
2001.

[2] Bieszczad, A.; Pagurek, B.; White, T. Mobile Agents for Network
Management, IEEE Communications Survey. Available at
http://www.comsoc.org/pubs/surveys, 1998.

[3] Cockayne, William R. and Zyda, Michael, Mobile Agents,
Manning Publications Co., vol. 1, 1998.

[4] Khosla, R. And Dillon, T. Engineering Intelligent Hybrid Multi -
Agent Systems. Kluwer Academic Publishers, 1997.

[5] Mobile Agent List. Available at http://www.informatik.unistutt-
gart.de/ipvr/vs/projekte/mole/mal/preview/preview.html

[6] GenMagic Inc. Odissey Home Page. http://www.genmagic.com
/technology/odissey.html

[7] Gray, R. Agent TCL: a transportable agent system. CIKM
Workshop On Intelligent Information Agents, 1995.

[8] Peine, Holger and Stolpmann, Torsten. The Architecture of the Ara
Platform for Mobile Agents . Available at
http://citeseer.nj.nec.com/peine97architecture.html, 1997.

[9] Johansen, D.; Van Renesse, R.; Schneider, F. B. An Introduction to
the TACOMA Distributed System. Technical Report 95-23, Tromso
and Cornell University, 1995.

[10] TRL Group, Aglets faq. Available at www.trl.ibm.com
/aglets/faq.html. IBM Corporation.

[11] Oshima, M; Karjoth, G. and Kouichi, O. Aglets Specification 1.1 .
Available at www.trl.ibm.com/aglets/spec11.html. IBM
Corporation, 1998.

[12] Soun, Y. SCK (SNMP Construction Kit) . Available at
http://membres.lycos.fr/ysoun.

