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Abstract— This paper deals with performance improvement of event-
driven simulation of multiservice loss networks by using Engsets’s custo-
mers model approximation. Model is based on simulation state modulated
homogeneous Markov chain. The model obtains equal simulation results
as direct model of group of customers. Simulation runs significantly faster,
especially for large number of customers considered.

I. INTRODUCTION

THE primary goal of network engineering is to solve the pro-
blem of finding suitable network topology and to obtain

optimal sizing of network equipment. Significant progress has
already been made in the field of finding suitable network to-
pologies. However, the problem of sizing capacities of transmi-
ssion systems and sizing of switching nodes is far from being
well solved. Current solutions primarily minimize the overall
price of switching equipment needed. This is mainly due to ex-
tremely complex analytical models describing network traffic
and consequently the hardness of extrapolating capacity based
on those models.

This paper is concerned with per-connection performance
analysis of guaranteed services traffic in multiservice environ-
ment. There are two basic problems. One problem of the
analysis is calculating end-to-end blocking probabilities for each
pair of nodes and each service. The other problem is opti-
mal sizing of resource capacities with objective to satisfy maxi-
mum end-to-end blocking probabilities predefined for each ser-
vice. As we shell discuss later, calculating blocking probabi-
lities involves analysis of complex multidimensional stationary
Markov chains. Explicit expressions developed for both Erlang
and Engset models are highly complex and require analytical
and numerical approximations. Even though blocking probabi-
lities can be calculated from approximations for fixed and alter-
nate routing, extrapolating capacities is extremely difficult. The
complexity additionally increases when dynamic routing sche-
mes are considered.

Alternative to the complex analytic approach is simulation-
based analysis. Event-driven simulation is the most suitable tec-
hnique for this problem. It can be used for both performance
evaluation and optimum capacity planning, when suitable met-
hods are used. Such an approach has been discussed in [9]. In
this paper we are concerned with accurate modeling of the be-
havior of end users in accordance to Engset’s traffic model. To
demonstrate quality of the approximation we developed, simula-
tions on two different event-driven simulators were performed.
We compare results for Engset’s and Erlang’s loss network mo-
del.
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This paper is organized as follows. In Section II we give
a short overview of available analytic methods for calculating
blocking probabilities and indicate hardness of application of
these methods to real networks. In Section III we briefly des-
cribe simulation method and capacity planning method. In Sec-
tion IV we describe Engset’s simulation model of customer col-
lections in detail. Section V presents simulation results and
comparison to Erlang loss network model. We conclude in sec-
tion VI.

II. PROBLEMS OF ANALYTIC APPROACH

Homogeneous Markov chains theory is mathematical tool
most often used to accurately describe multiservice loss
networks. Basically, there are two models: Erlang’s model and
Engset’s model. Due to larger complexity of Engset’s model,
the most often analyzed model is Erlang’s loss network model.
It assumes that call establishment requests for a single service
arrive according to Poisson process with constant rate λ. On the
contrary, Engset’s model takes into consideration the fact that
call arrival rate is modulated by number of free customers in
customers group.

The most simple analysis of loss networks is the one of fixed
routing networks. Assume a network with M links (resources)
where each link is of capacity Cm expressed as integer multi-
ple of some basic rate ε, C = {C1, . . . ,CM}. Let there be
K different services, each requesting bandwidth βk,m on link
m, where βk,m is an integer multiple of defined basic rate ε,
β = {β1, . . . , βM}. Let rk be a fixed route used by service
k to establish connection and R set of all routes defined in the
network. βk,m equals 0 in case link m does not belong to route
rk. Assume that call arrival rate and mean call duration gene-
rally depend on the number of established connections of ser-
vice k on route rk. Let arrival rate of service k be λk(i) and
mean call duration 1/µk(i) where i is the number of service-
k connections established on route rk. Let Markov chain state
vector be n = {n1,n2, . . . ,nk} and S(C) set of allowed states
corresponding to sharing policy used. The usual sharing policy
considered is complete sharing policy (CS) for which

S(C) =
{
n ∈ Z

+K : β · n ≤ C
}
. (1)

It can be easily shown that stationary probability of vector n is
given by

p̂(n) =
K∏

j=0


 λj(0)
µj(nj)

nj−1∏
i=1

λj(i)
µj(i)


×G[S(C)], n ∈ S(C), (2)
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where G[S(C)] is normalization constant given by

G[S(C)] =
∑

n∈S(C)

K∏
j=0


 λj(0)
µj(nj)

nj−1∏
i=1

λj(i)
µj(i)


 . (3)

The generic product form allows us to deduce Engset and Er-
lang models for any sharing policy, but fixed routing. Blocking
probability for certain service k is obtained by summation of
stationary probabilities of blocking states for the service. By
certain manipulations it can be shown that blocking probability
for service k on route rk is given by

pBk
= 1 − G[S(C)]

G[S(C)]
, (4)

where S(C) is subset of S(C) in which service k is not blocked.
The main problem with evaluating blocking probability is large
complexity of evaluating function G[S(C)]. One of the relaxati-
ons to such a large complexity is numerical inversion algorithm
developed by Choudhury, Leung and Whitt ([1], [2]).

Another approach to solving the problem of evaluating bloc-
king probabilities is to use approximations. There are several
approximations developed. Two most significant ones are cla-
ssical normal approximation and Erlang fixed point approxima-
tion. It can be shown ([4]) that these approximations obtain good
results when ratio of link capacity and offered traffic per link re-
mains constant. The main idea of both approximations is the
assumption that blocking on each link is independent from ot-
hers. As shown in [4], there exists a parameter Bm ∈ [0, 1〉
such that blocking probability of service class k on route rk is
approximately

pBk
≈ 1 −

∏
m∈rk

(1 −Bm)βk,m . (5)

In case of single service network (e.g. telephone network), pa-
rameter Bm equals the value of Erlang’s loss formula Em =
E(ρm, Cm):

pBk
≈ 1 −

∏
m∈rk

(1 − Em)βk,m , (6)

where
ρm =

∑
r:m∈r

λr

µr

∏
j∈r−{m}

(1 − Ej). (7)

Even though these results look simple, they require solving the
system of non-linear equations. In some cases their application
is even more stressing than calculating blocking probabilities
from exact equation (4).

When alternate routing is considered, calculating blocking
probabilities becomes even more complex since overflow traffic
is considered. Difficulty is in non-randomness of overflow traf-
fic. This problem was first studied by Wilkinson [10] and Pratt
[7] who analyzed this problem with equivalent random traffic
theory. However, when dynamic routing is considered, problem
of calculating end-to-end blocking probabilities becomes even
more complex.

Even though the blocking probability can be (at least approxi-
mately) calculated, the problem of inverting blocking formulas

becomes very difficult and imposes use of complicated numeri-
cal methods. This all indicates that analytic approach to calcu-
lating blocking probabilities in general case is inexhaustible so-
urce of applied mathematics research, but still represents a pro-
blem to be solved by other approaches, especially when capacity
planning is considered. In this paper we consider simulation-
based capacity estimation method and analyze Markov chain
based models describing large groups of customers in order to
improve its performance.

III. MULTISERVICE LOSS NETWORK SIMULATION

Easier way to obtain blocking probabilities is to run event-
driven simulation of the multiservice loss networks. The most
simple simulation method is direct simulation where each call
establishment, termination and rejection event is considered.
Blocking probabilities are estimated as ratios of total number
of rejections and attempts. In order to well estimate blocking
probabilities, large simulation run lengths are needed. Howe-
ver, by increase of processor speeds, time needed to obtain good
estimate becomes tolerable.

If fixed routing network is considered, a rational alternative
is usage of one of simulation speed-up techniques. One of the
most suitable ones is importance sampling technique (see [8]).
Even though this technique allows far more precise estimate of
blocking probability for fixed routing loss networks, estimating
blocking probability for networks with alternate and dynamic
routing becomes as tricky as the network mathematical model
itself.

Even though simulation is most often used for estimating
blocking probability, it can also be used to estimate optimum
network resource capacities. One possible capacity estimation
method is presented in [9]. This method is based on idea to mo-
dulate network resource capacities by measured call blocking
probability during simulation as long as targeted GoS (Grade of
Service) is unsatisfied. Customers and services are modeled ac-
cording to Erlang’s or realistic Engset’s model. In the beginning
of the simulation all resource capacities equal 0. First call at-
tempts are rejected and measured blocking probability equals 1.
Since the measured GoS is not equal to the targeted one, capaci-
ties are increased according to some modulation function as the
following call attempts arrive. Thus the measured blocking pro-
babilities decrease and capacities converge to their final values.
The procedure of increasing capacities is stopped when GoS for
all the services and all customer groups reach targeted value.

In case of relatively small number of customer groups, the
most convincing results are obtained when considering Eng-
set’s model. This is a well known observation, used in many
applications, including equivalence random theory by Wilkin-
son. Due to this reason we prefer using Engset’s model in simu-
lation. However, direct simulation of Engset’s model requires
large amounts of memory, resulting is rather slow simulation.
In order to accelerate the simulation we developed a Markovian
approximation model that precisely describes realistic Engset’s
model. The approximation model is described in the following
section.

IV. ENGSET’S MODEL OF CUSTOMERS COLLECTIONS

The obvious incompatibility between Erlang’s and Engset’s
model is the variance of number of active connections establi-
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shed. In case of Erlang’s model with no blocking, mean and va-
riance equal E[X] = α/β, V ar[X] = α/β where X is Markov
chain (birth-death process) in equilibrium (i.e. stationary state).
α is call attempts arrival intensity and 1/β mean call duration.
Equivalent Engset’s model in equilibrium without blocking, de-
signated by Y , has mean and variance equal E[Y ] = N λ

λ+µ ,

V ar[Y ] = N λµ
(λ+µ)2 where N is number of customers conside-

red in model, 1/λ mean time between two successive calls initi-
ated by a single customer and 1/µ mean call duration. Compa-
rison of these two simplified models can only be done by consi-
dering equal mean of active customers. Poisson arrival process
of Erlang’s model can be considered as sum of individual Po-
isson processes coming from each of customers in the group.
Let a be offered traffic per customer in Erlang’s model so that
λ/µ = Na. If µ = β then by equalizing mean values we obtain

α

µ
= Na = N

λ

λ + µ
⇒ α = N

λµ

λ + µ
.

Variance ratio equals

V ar[X]/V ar[Y ] = 1 + λ/µ. (8)

Since λ/µ ratio is about 0.1 during busy traffic hour, variances
of both models is almost equal.

More significant is the difference in call arrival process.
While Erlang’s model generates Poisson call arrival process, call
inter-arrival process of Engset’s model is modulated by number
of free customers in observed collection. Full Engset’s model is
very difficult to describe by Markov chain. It can be approxima-
ted by 3 dimensional Markov chain. The first dimension relates
to number of calls initiated from the group, the second dimen-
sion to number of customers busy by received calls from other
groups and the third dimension relates to number of calls ter-
minated at the same group. However any attempt to find sta-
tionary state probabilities fails to obtain simple analytic results
what makes the model completely useless. The only way to
obtain analytic distribution of number of active customers is to
approximate it by normal distribution by using central limit the-
orem. However, parameters of the normal distribution is difficult
to determine analytically. This is why simulation can be used to
estimate parameters of the normal distribution.

Simulation technique used for this purpose is most often
event-driven simulation technique. In order to realistically si-
mulate customers behaviour according to Engset’s model, simu-
lator has to reserve one or more event object for each of the
customers. However, number of customers considered may be
very large. Even more, the number of physical customers mul-
tiplies with number of services present in the network. This all
easily results in reservation of large amounts of memory which
is unacceptable for practical applications, for instance capacity
planning.

This is why we developed a homogeneous Markov chain ba-
sed approximation model requiring only one event object per
customer group. The model assumes that time between two suc-
cessive calls of a single customer is distributed exponentially re-
gardless of number of calls customer received during the period.
We assume that call duration distribution is irrelevant in case the
call duration distribution posses rational Laplace transform, due

to the ”insensitivity” property (e.g. [3]). This is fortunately a
very common case.

Each collection can be modeled as an independent Markov
chain (birth-death process) X(t). State of the process is unco-
nventionally defined as a pair (n,m) where n is the number of
customers that initiated the ongoing call and m is the number
of customers receiving a call. The number of customers in the
collection is N . Let p̃ be the probability that call initiated from
any member of collection terminates in the same collection.

According to regularity property of Markov chains, direct
consequence of differentiation of Kolmogorov equation, it fol-
lows that state vector �x probability equals

p
x(t + h) =
∑


x′ �=
x,

x′∈Sx

p
x′,
x(h) · p
x′(t). (9)

h is very short period of time and Sx set of all allowable states

Sx =
{
x̃ = (n,m) ∈ Z

+� : � + � ≤ N

}
.

p
x′,
x(h) is transition probability through time h equal to

p
x′,
x(h) = q
x′,
x · h + o(h), (10)

where q
n′,
n is transition rate from state �n′ to state �n, member of
transition rate matrix Q of dimensions N ×N (i.e. infinitesimal
generator). o(h) is Landau symbol defined by

lim
h→0

o(h)
h

= 0.

It is clear that incoming call arrival process changes the num-
ber of available (free) customers in observed collection. The
same number is also changed by establishing calls inside of ob-
served collection (with probability p̃). Since the current call
request process of the observed collection is proportional to
number of currently available customers, it is clear that this pro-
cess is dependent on activity of other collections. Collections
thus mutually modulate current call arrival processes intensities.
Additionally, intensity is modulated by number of successfully
established connections inside and outside of collection.

Assume that current state vector at time point t is �x = (n,m).
m is an independent random variable representing number of
customers occupied by receiving call. This variable is modula-
ted by both observed and all other collections. We have no in-
formation regarding its behavior. Observe a short period of time
h. If h is infinitesimally short, the following are states reacha-
ble from state �x = (n,m) through period h: (n−,m), (n+,m),
(n+,m+), (n−,m−), (n,m−) and (n,m+). The most interes-
ting are last two states: (n,m−) and (n,m+). They are entered
only by receiving call from other collections. Since those tran-
sition are not controlled by the Markov chain describing col-
lection itself, they are not considered at all. Since the change
of variable m cannot be fully controlled by the model, states
(n−,m) and (n−,m−) can be considered as one, as well as
states (n+,m) and (n+,m+). This is justified because states
(n−,m−) and (n+,m+) will be entered with probability p̃ whe-
never n changes. By grouping the states we converge to a modu-
lated one-dimensional birth-death process Y [t,m(t)], function
of parameter t, simulation time, and outer modulating process
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m(t). In order to create a model useful for simulations we have
to calculate distribution of time between state shifts, i.e. increase
or decrease of number of calls initiated from the observed col-
lection, and probabilities of transitions to first higher and lower
states at the moment of state shift.

Y [t,m(t)] is thus one dimensional Markov chain with inten-
sity transition matrix Q[m(t)] modulated by stochastic process
m(t) representing number of connection terminating at the col-
lection. Define functions δn−,m and δn+,m as follows:

δn+,m =
{

1
0

n + m(t) < N
n + m(t) = N

δn−,m =
{

1
0

n > 0
n = 0

(11)

Probability that process Y is at state n at time t + h equals:

P {Y [t + h,m(t + h)] = n} =
= P {Y [t,m(t)] = n− 1} · pn−1,n[h,m(t)]+
+ P {Y [t,m(t)] = n + 1} · pn+1,n[h,m(t)]+
+ P {Y [t,m(t)] = n} ·
· {1 − pn,n−1[h,m(t)] − pn,n+1[h,m(t)]} .

(12)

According to regularity property transition probability pn−1,n[h,m(t)]
is proportional to current number of available customers and in-
tensity of establishing connection of a single customer:

pn,n+1[h,m(t)] =
= {[N −m(t) − n]λh + o1(h)} δn+,m =

= q
m(t)
n,n+1h + o1(h).

(13)

Similarly, pn+1,n[h,m(t)] is proportional to current number of
established connections and intensity of closing connection, no
matter the number of connections terminating at the observed
collection:

pn,n−1[h,m(t)] = {nµh + o2(h)} δn−,m =

= q
m(t)
n,n−1h + o2(h).

(14)

According to general Markov chains theory, the time the
chain resides in state k is distributed exponentially with para-
meter equal to the k-th diagonal element of transition intensity
matrix multiplied by −1. Thus it follows that mean time the
process Y [t,m(t)] resides in state n equals:

Tn,m(t) =
1

nµδn−,m + [N −m(t) − n]λδn+,m
. (15)

where m(t) is number of busy customers at moment when pro-
cess entered state n. At this point we notice a large deviation
from the exact model. Namely, since the state residence time is
determined at moment of state transition and since event with
new state shift time is generated, model behaves like no new
connections will be established toward customers inside collec-
tion. This is why described simulation model only approxima-
tes exact model. However, deviation is not insignificant in sta-
tionary state of the model, after simulation advanced for some
time. This is because incremental transition intensities are pro-
portional to N − m(t) − n and variation of m(t) is small, i.e.

expected change of m(t) during period of time process resides
in state n is negligible.

After state shift event was fired, simulation model has to de-
cide whether to initiate a new call or terminate one. Again, ac-
cording to general Markov chain theory transition probabilities
are:

pn+,m =
[N − n−m(t)]λδn+,m

nµδn−,m + [N − n−m(t)]λδn+,m

pn−,m =
nµδn−,m

nµδn−,m + [N − n−m(t)]λδn+,m

By defining these parameters, we have described all the mec-
hanisms needed to build simulation model. The most important
consequence is that there is only one event needed per collec-
tion, while in a conventional model one event is needed per each
customer. This significantly improves simulation performance.
The overall number of event objects present in the simulator
is proportional to number of customer groups thus alleviating
priority queuing processing in event lists and event distribution
complexity.

The problem arises in case when the birth-death process de-
cides to increase the number of active customers and call bloc-
king occurs. Since customers are expected to retry shortly after
blocking, an additional process appears, increasing call establi-
shment attempts intensity. In case when blocking probability is
very small it is justified to generate additional events emulating
repeated attempts. However, in case when blocking probabi-
lity is large, a parallel stochastic process should be considered.
However, this problem is out of the scope of this paper.

V. SIMULATION RESULTS AND COMPARISON

In this section we demonstrate how well our model approxi-
mates simulation model in which a separate event thread is used
for each customer - direct model. We set up a small scenario
consisting of two customer collections connected via link of an
infinite capacity. Simulation was run on LATS ATM Simulator
[5]. These results have later been verified by the same model
implemented in OPNET Modeler [6]. Simulation configuration
is described by figure 1. It comprises of 5 collections of cus-
tomers: observed collection, tree groups generating call arrivals
into observed collection and sink, an inactive group receiving
calls from the observed collection. Groups are connected by
links and nodes of an infinite capacity so that blocking probabi-
lity due to limited resources is 0. The only blocking that occurs
is when a called customer is already busy due to an ongoing call.

Fig. 1. Simulation configuration.
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Groups G1, G2 and G3 have 10000 customers each. They
direct 40% of overall call attempts to the observed collec-
tion, close 20% inside themselves and exchange remaining 40%
among themselves. Observed collection closes 60% of all calls
inside itself and sends remaining 40% to the sink group. Sink
group does not generate any traffic.

First we compare means and standard variations of number
of connections established from the observed collection to the
sink obtained by direct simulation and approximation model. As
can be seen from figure 2, mean number of connections establi-
shed in direct simulation matches mean number of connections
established in simulation with approximation model for diffe-
rent number of customers in the observed collection. Figure 3
shows negligible difference between means and standard devi-
ations obtained for different numbers of customers in the ob-
served collection. One should take into account statistical error
introduced by limited number of sample points used to calculate
means and standard deviations.

Fig. 2. Mean number of active connections for direct simulation and simulation
model vs. customers group size.

Fig. 3. Ratio of mean and variance of number of active connections for direct
simulation and simulation model vs. customers group size.

Previous figures show how well statistical parameters match
for both direct simulation and approximation simulation model.
Figure 4 shows how well relative frequencies (i.e. probability
density functions - PDFs) match for two simulation models.

Fig. 4. Relative frequency (PDF) of number of established connections for
customers group size
N = 1000.

As stressed before, the most important advantage of the ap-
proximation model in contrast to the direct simulation is simu-
lation speed. Graph in figure 5 shows that simulation execution
time when using direct simulation is at least 2 times greater than
in the case of approximation model. As the number of simulated
customers increases, simulation execution time ratio increases.
After certain number of customers is reached, direct simulation
becomes unacceptably slow and ratio of execution times beco-
mes greater than 10. In our case this difference is reached for
the total number of 4 million customers in the network.

Fig. 5. Comparison of simulation execution times.

VI. CONCLUSION

Analytic approach to planning capacities in multiservice loss
networks is too complex for a suitable practical applications.
This is why we emphasize the importance of using the simu-
lation in solving this complex problem. A capacity planning
algorithm is reviewed in order to demonstrate how simulation
can be used instead of analytic approach.

The main aim is estimating capacities in the network as ac-
curately as possible. When a conventional event-driven simula-
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tion, a separate event thread for each customer in the simulation.
This results in low performance of the simulation.

In order to improve simulation performance, we have deve-
loped a simple simulation model that very accurately descri-
bes direct model in which each customer is simulated separa-
tely. In order to demonstrate this improvement we ran dozens
of simulations with both direct and approximate model. As
shown, approximate model behaves quite accurately, with ne-
gligible deviations in comparison to direct model. This model
allows us to design capacities of large multiservice network with
millions customers according to Engset’s loss model by using
simulation-driven method described.
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