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A. Guimarães� and R. Coelho��
Instituto Militar de Engenharia

Electrical Engineering Department

Rio de Janeiro, Brazil

Abstract—In this paper we examined the performance of the�����
and fBm models to represent video traffic with different time-dependence
or scaling degrees. The queueing behavior was also investigated when fed
by these models. Several encoded video sequences were used for the exper-
iments to validate the models performance results.

I. I NTRODUCTION

�
IDEO traffic has an inherent time dependence scaling in-
variance due to its encoding process. Time-dependence

impact on queueing performance is still a very interesting re-
search challenge. Recent studies based on asymptotics [1][2][3]
queueing behavior showed that time-dependence has no signif-
icant impact on buffer/network performance. The main draw-
back of this research area concerns the lack of accurate traf-
fic/network models. An accurate traffic model should repre-
sent the first and second-order statistics. Besides, it should be
tractable in terms of queueing theory.

In this work we examined the queueing behavior fed by the
restricted����� and the non-restricted fBm time-dependent
traffic models. The models performance were evaluated in terms
of video traffic time-dependence, tail-distribution and autocorre-
lation characterization. The models queueing performance were
then examined in terms of their effective bandwidth (EB) results.
We show that the heavy-tail distribution have more impact on
queueing performance compared to the time-dependence char-
acteristics, even for large buffer sizes.

The rest of the paper is organized as follows. In Section II we
present a brief overview of����� and fBm models. Section
III describes the effective bandwidth concepts. In Section IV the
main results are presented and discussed. Finally, Section V is
devoted to the conclusions of this work.

II. T HE����� AND FBM INPUT PROCESSES

In our analysis we considered the����� point process and
fBm models to represent the time-dependence of scaling traffic
characteristics. By definition the����� represents the time
dependence degree (� � ���) for only a restricted period of
time. However, this restricted time could be enough to investi-
gate the impact of the traffic dependence on performance mea-
sures. The fBm is a non-restricted time dependence model since
it can represent the whole scaling degree range (� � � � �). A
stochastic process can be classified by its dependence degrees:
Long-Range dependent (LRD) (� � ���), Short-Range depen-
dent (SRD) (� � ���) or Anti-persistent (� � ���). .
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A. �����
For the����� process [4] the input/source is considered an

infinite server with� distribution service time fed by a Poisson
process with� mean arrival rate, i.e., the input process is de-
fined by the� rate and� distribution. The����� generated
process has an autocorrelation function (ACF) defined by

	�
� � ���
�
�� 
 � �� �� �� ��� � (1)

This ACF shall lead to a restricted time-dependence degree rep-
resentation or duration. The
 parameter is obtained from the
video traces to fit sequences ACF. The� distribution is related
to the ACF by the expression
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where	�
� is a decreasing and integer-convex function with
	��� � � � 	��� and lim���	�
� � �. The� distribution
is obtained by using (1) into (2).

To fit the real traffic distribution a hybrid Poisson to
Gamma/Pareto transformation (PGP) is performed keeping the
ACF obtained from video traces.

B. fBm

The fractional Brownian motion (fBm) is a gaussian stochas-
tic process (�����) indexed in�with zero mean and continuous
sample path (null at origin). The variance of its independent in-
crements is proportional to its time interval accordingly to the
expression

� ��������������	 � ��� � ����� � (3)

for � � �� � ��� It can be proven [5] that the fBm is a station-
ary and self-similar process with parameter� , i.e., its statistical
characterization holds for any time scale. Thus, for any� and
� � �, we have

�����
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�� ��� �����
���������	��� (4)

where� is the process scaling factor. Because����� is gaus-
sian, it is completely characterized by its mean (null) and its
covariance function, which is given by

	�
� �
�
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Norros [8] proposed a discretization procedure of a fBm process
to represent a traffic stream with scaling characteristics. Denot-
ing ���� the number of received packets/cells by a multiplexer
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up to time�, we have

���� � ��

	
�������� (6)

where� is the mean rate of the arrival process and� �
� ���	�
��
��
��� is a variance coefficient. We considered A(t) as one

of the arrival process representing a video connection.
For the simulation experiments the fBm sample paths were

generated by the well knownRandom Midpoint Displacement
[10] algorithm. The fBm samples generation depends only on
�, � and� parameters. However, the����� � distribution
fitting procedure leads to a complex sample generation.

III. E FFECTIVE BANDWIDTH CONCEPTS

The models performance were also examined in terms of their
effective bandwidth results. For the analysis we considered the
values obtained from the Norros equation [8] and simulation ex-
periments. For a detailed description of EB definitions and for-
mulations the reader should refer to [11].

Consider���� as a fBm traffic process, defined in (6) with
parameters�, � and� ; a queue system with deterministic ser-
vice � and an infinite buffer�. The buffer occupation is the
stochastic process���� defined as

���� � ��

��
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 ������� (7)

If � � � �� � �� is the probability that a buffer of size� be-
comes larger than a limit�, the required�	��� for an aggregate
flow of � connections is defined as
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where���� � ���������� .
To evaluate the EB from (8), we determine the maximum

number of connections (���
) which can be admitted in a link
with capacity� by
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Hence, the effective bandwidth of each video traffic connec-
tion can be evaluated by

�� �
�

���

(10)

IV. RESULTS AND DISCUSSIONS

Following in this section, we present the performance results
for the����� and fBm models. The obtained ACF, tail dis-
tribution and EB curves are showed for both models and for dif-
ferent video traffic sequences.

A. Analysis Environment

We considered five encoded video sequences:Star Wars, Si-
lence of the Lambs (H.263), Race (MPEG-4) andMr. Bean
(MPEG-1)1. TheTTennis02 (� � ���) sequence was examined

�The Star Wars sequence is available at
ftp://ftp.research.telcordia.com/pub/vbr.video.trace/.
TheSilence of the Lambs andMr. Bean sequences are available at http://www-
tkn.ee.tu-berlin.de/ fitzek/TRACE/ltvt.html. TheRace sequence is available at
http://nero.informatik.uni-wuerzburg.de/MPEG/traces/.

in order to evaluate the models ability to deal with anti-persistent
(� � ���) traffic. This sequence was generated by the fBm pro-
cess (eq. (6)) considering the� and� parameters obtained from
the real standard MPEG-2Table-Tennis.

Table 1 presents the sampling rate��, the mean�, the stan-
dard deviation� and the estimated Hurst��2

TABLE I

VIDEO SEQUENCES PARAMETERS.

Sequence �� (frames/sec) � (kbps) � (kbps) ��

Star Wars 24 5335.8 1200.8 0.830
Silence 25 891.6 344.09 0.822
Bean 25 183.92 179.0 0.817
Race 25 1804.8 537.79 0.870

TTennis02 50 10176 2049.9 0.260

To fit a monotone convex ACF the MPEGRace and Bean
sequences were smoothed within the GoP level such that

����
� �

����

���������	�

�� � � �� ���� ���� (11)

where�� is the number of bytes per frame (� � �� ���� � ) and
� is the sequence size (in frames) of the original trace. The
parameters of the new smoothed sequences are given in Table
II. As we note, due to ACF smoothing procedure the sequences
present a changing in the� value leading to different�� param-
eters.

TABLE II

GOP SEQUENCES PARAMETERS.

Sequence � (kbits/sec) � (kbits/sec) ��

������� 183.9 92.34 0.902
 �!���� 1804.8 308.54 0.840

Tables III and IV show the new parameters estimated from the
samples generated by the����� and fBm models considering
the smoothing procedure (see eq. (11)).

TABLE III

����� SEQUENCES PARAMETERS.

Sequence � (kbits/sec) � (kbits/sec) ��

Star Wars����� 5508.4 1261.7 0.892
Silence����� 951.8 298.66 0.812
Bean�������� 211.67 120.30 0.840
Race�������� 1890.3 308.54 0.822

Tennis02����� 10960.4 1892.6 0.644

B. ACF Results

Figure 1 depicts the ACF curves obtained from the original
traces and for the����� and fBm models. As expected the

�For the Hurst estimation parameters we use use the R/S [6] and Wavelet
(Abry-Veitch)[7] estimators[3]. The estimation results were quite similar for all
sequences and for both methods.
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Fig. 1. ACF for (a) Star Wars, (b) Silence, (c) Race, (d) Bean and (e) TTennis02 sequences.
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Fig. 2. HTD for (a) Star Wars, (b) Silence, (c) Race, (d) Bean and (e) TTennis02 sequences.

����� presented better fitting results compared to the fBm
for the video sequences with subexponential ACF (StarWars).
This was not the case for theRace andTTennis02 sequences.
The best ACF fitting results were obtained for theSilence se-
quence for both models.

C. Heavy-Tail Distribution Results

A random variable� has a heavy tail distribution (HTD) if

� �� � "� �� !"��� "��� (12)
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Fig. 3. Effective Bandwidth for (a) Star Wars, (b) Silence, (c) Race, (d) Bean and (e) TTennis02 sequences.

TABLE IV

FBM SEQUENCES PARAMETERS.

Sequence � (kbits/sec) � (kbits/sec) ��

Star Wars��� 5426.6 1192.1 0.819
Silence��� 896.8 340.59 0.837
Bean������ 235.5 87.734 0.882
Race������ 1808.2 303.18 0.852

where� � # � � is the shape parameter and! is a positive
constant[9]. The Pareto distribution is one of the most important
HTD since it well fits the LRD characteristics.

The HTD results for all sequences are depicted in Figure 2.
As we observe the����� and fBm tail distribution were very
close for theRace sequence.

For theBean sequence however the fBm HTD were quite dif-
ferent from original trace. The����� was not able to cap-
ture the realTTennis02 HTD since it is by definition better for
gamma/pareto tails representation.

D. Effective Bandwidth Results

The EB simulation results for both models were compared to
the theoretical values obtained for Norros equation (8). For the
experiments we considered large buffer sizes (� � ���� cells,
1 cell=424 bits), link capacity� � ��� Mbps and� � ���
.
The EB results are presented on Figure 3.

We can note from theSilence sequence that despites the sim-
ilar ACF (see Figure 1) obtained from both models, the EB
����� values were largely different from the fBm model.
This is explained by the different HTD results (see Figure 2).

For theRace sequence however, both models obtained close EB
results compared to the theoretical values. This is due to the fact
that Race is a gaussian-like sequence. Moreover, both models
obtained better HTD fitting results for this sequence. From the
above discussion we should then conclude that the tail distribu-
tion is extremely relevant for the EB performance and shall be
considered for buffer dimensioning and network design.

V. CONCLUSIONS

The performance of����� and fBm models to represent
the ACF, time-dependence or scaling degree and heavy-tail dis-
tribution was examined on this paper. In general the�����
presented higher effective bandwidth values compared to the
fBm model. The results also showed that the heavy-tail dis-
tribution has more impact on bandwidth than the dependence or
scaling characteristics. Other heavy-tail distribution�����
transformation, e.g., Poisson to Weibull or subexponential, shall
be investigated to represent a wide-range of video sequences.
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