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Abstract - This work presents a new algorithm based on the
Minimum Output Variance Least Mean Square Estimator when the
influence of the secondary path can not be neglected and its output
is constrained by a saturation nonlinearity. This situation is typical
in several adaptive modeling and control systems where the
associated hardware and transducers have a finite power handling
capability. Analytical expressions are obtained for the behavior of
the mean weight vector and for the mean square error for Gaussian
inputs and slow learning. The optimum penalty factor is
determined. The new algorithm provides an unbiased solution to the
associated nonlinear mean square estimation problem for small
estimation errors of the secondary path and degree of nonlinearity.
Monte Carlo simulations show excellent agreement with the
predictions of the theoretical model.

I. Introduction

Adaptive filters have been successfully and largely used
in communications and control systems [1]. The family of
stochastic gradient adaptive algorithms (the LMS family)
is the most popular in many applications, such as echo
cancellation, equalization and active noise or vibration
control (ANC). The main reasons for that are its simplicity
and robustness [1,2].

In general, these algorithms are designed for maximum
performance in linear environments. However, the
associated hardware (power amplifiers and transducers)
frequently becomes an important source of nonlinear
effects [3,4]. In many cases, such nonlinear effects can
severely impair the adaptive algorithm performance
[3,7,8].

In system identification problems, one of the most
common nonlinear effects is saturation at the adaptive
filter output [3,5,7,9]. One solution to avoid such
nonlinear distortions is to overdesign the system. The
signal power is kept sufficiently low compared to existing
saturation levels. This solution increases the cost and
limits the system’s performance. A more effective solution
is to embed an automatic control of the nonlinear effects
within the adaptive algorithm. This is usually achieved by
adding a penalty function to the adaptive algorithm’s cost
function in order to control the input signal to the
nonlinearity. Algorithms that use this approach are called
minimum effort adaptive filters. Examples are the Leaky-
LMS, which seeks to minimize the norm of the filter’s tap

weight vector, and the Minimum Output Variance Least
Mean Square adaptive estimator (MOV-LMS), which
minimizes the adaptive filter output power. From these,
the MOV-LMS is the most appropriate to handle
saturation nonlinearities at the adaptive filter output, as it
directly controls the signal power at the nonlinearity input.
However, different choices of the penalty term lead to
different steady-state misadjustments [5,6].

Reference [7] studied the behavior of the LMS
algorithm with a saturation nonlinearity at the adaptive
filter output. It was demonstrated that the mean converged
weights correspond to a biased solution with respect to the
minimum of the MSE surface. This bias is a multiplicative
scalar, which is a function of the system’s degree of
nonlinearity. A recent work [8] demonstrated the
possibility of achieving maximum cancellation in a
nonlinear environment by properly designing the penalty
factor of the MOV-LMS algorithm.

The results obtained in [7,8] cannot be directly applied
when the secondary path (the signal path containing the
adaptive filter) significantly modifies the control signal
produced by the adaptive filter. Such is the case when
there is a filtering operation in the secondary path.

Reference [9] extended the analysis presented in [7] for
the LMS algorithm to the Filtered-X LMS (FXLMS) case.
The results in [9] show that the FXLMS algorithm
performance can be significantly affected even in systems
with small degrees of nonlinearity. The steady-state weight
vector bias includes a directional change if the estimation
of the secondary path is not perfect. Moreover, the
multiplicative bias cannot be controlled even with perfect
secondary path estimation. Thus, there is a need for an
adaptive algorithm that can provide unbiased solutions for
system identification problems with a saturation
nonlinearity in the secondary path.

This work presents the analysis of a variant of the
MOV-LMS adaptive algorithm, called MOV-FXLMS.
Like the regular FXLMS algorithm, the MOV-FXLMS
algorithm takes into account a linear filtering operation in
the secondary path. Unlike the FXLMS algorithm, it also
takes into account a memoryless saturation nonlinearity at
the linear filter output.



Deterministic nonlinear recursions are derived for the
mean weight and mean square error. These recursions can
predict the algorithm behavior during transient and in
steady-state. The optimum penalty factor is determined as
a function of the system’s degree of nonlinearity. A simple
procedure is suggested for the estimation of the
nonlinearity. It is shown that the new algorithm using the
optimal penalty factor converges to the minimum of the
performance surface (maximum cancellation level).

Finally, comparisons between the theoretical model
predictions and the results of Monte Carlo simulations are
provided, which show very good agreement. The
robustness of the algorithm to errors in the estimation of
the degree of nonlinearity is verified.

Fig. 1. Block diagram of the system analyzed.

II. The Analysis Model

Consider the system in Fig. 1.
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The behavior of ( )g <  can be varied between that of a

linear device ( ∞→2σ ) and that of a hard limiter ( 02 =σ )
by changing σ and by using a suitable multiplicative
constant (considered unity here for simplicity).

III. MOV-FXLMS Algorithm

The MOV-FXLMS algorithm minimizes the
instantaneous cost function:
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Assuming, for a while, the system is purely linear
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is the secondary path output signal. Evaluating the
gradient of (2) with respect to the weight vector yields the
weight update equation:
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where µ is the step size, γ  is the penalty factor and
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is the input signal filtered by an estimation of S.

IV. Mean Weight Behavior

The expected value of (4) is determined assuming that
the effect of the correlation between input and weight
vectors on the algorithm behavior can be neglected, when
compared to the effect of the correlations of lagged input
vectors [1,7]. Using this assumption and conditioning the
expectation of (4) on
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The second expected value on the r.h.s. of (7) is zero
since ( )x n  and ( )z n  are uncorrelated and zero mean. The

third and fourth terms can be easily evaluated using the
same assumption above. The last term is evaluated using
Bussgang’s Theorem as in [7,9]. As a result:
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Substituting (8) and (9) in (7) and assuming slow
adaptation (µ sufficiently small), the fluctuations of

( )n i−W  about ( ){ }E n i−W  have a negligible effect on

the average weight behavior over time [9]. Thus, the
expected value of (7) can be approximated by:
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which is a recursive equation for the mean weight
behavior.

A. Mean weight steady-state behavior

Assuming convergence and defining
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The scalar ν  is the real positive solution of the

biquadratic equation obtained from (12):
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It can be shown that the expression for the weight
vector corresponding to the minimum mean square error
(MSE) is given by [10]
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Comparison of (11) and (16) shows that the MOV-
FXLMS algorithm provides a biased solution in general,
which differs from (16) in both magnitude and direction.
The direction change depends on the quality of the

secondary path estimation Ŝ . The multiplicative bias
depends on both the estimation of S and the nonlinearity
parameter σ. However, differently from the FXLMS
algorithm, the converged mean weight vector for the
MOV-LMS algorithm can be adjusted by properly
designing the penalty factor γ in (4).

B. Estimation of the optimum penalty factor

Assuming perfect secondary path estimation, SS =ˆ .
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~
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minimizes the MSE. Moreover, 2η  in (13) is equal to 2β
in (16).

For the MOV-FXLMS algorithm to achieve the
minimum MSE, the penalty factor optγγ =  must be

designed so that ν  in (11) is equal to k in (16). Making
k=ν  and optγγ =  in (15) and rearranging it yields:
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Since in practice 2η  is not known, it must be estimated.
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If good estimations of S and 2η  are possible, the
converged weight vector of the MOV-LMS approaches the
point of minimum of the MSE surface:
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In contrast, the FXLMS mean weight vector for SS =ˆ

contains a multiplicative scalar bias that cannot be
eliminated.

C. Estimation of 2η

A practical design problem in determining ˆoptγ  is that
2η  is usually unknown. However, it was shown in [7,10]

that 2η  corresponds to the degree of nonlinearity of the
system and can be estimated by the relation:
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where { })(2 nyE sest  is an estimate for the variance of ( )sy n

and { })(max 2
sest yg  is the estimate of the maximum squared

amplitude at the nonlinearity output. Both quantities can
be estimated from practical measurements. Using 2η̂  for

2η  results in a deviation from the minimum MSE. The
results in Section VI show that the performance of the
MOV-FXLMS is very robust to such estimation errors,
especially for large degrees of nonlinearity.

V. MSE Behavior

For sufficiently small µ, a simplified model for the
MSE behavior can be obtained in [9]. Assuming small
fluctuations about the mean weights [Eq. (16), 9] can be
approximated by:
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where ( ){ }E nW  is obtained from (10).

A. Steady-State MSE

Assuming weight convergence and using (11) in (22):
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where ν  can be obtained through the solution of (15).

Assuming ˆ ≅S S  and 2 2 2η̂ η β≅ ≅ , (16) and (19) lead to:
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where k is defined in (16). Eq. (24) is an approximation
for the mimimum of the MSE surface [10].

VI. Simulations

This section presents analytical and simulation results
to verify the properties and accuracy of the theoretical
models given by (10), (11), (19), (22) and (23). Consider
the system in Fig. 1 with the following parameters: ( )x n

with 2 1xσ = , eigenvalue spread ( max minλ λ ) of xxR equal to

27.33, [ ]0.2756 0.3675 0.6890 0.4593 0.3215
T=oW ,

2 610zσ −= , ( )0 =W 0 , 1T =o oW W , 1T =S S , ˆ ˆ 1T =S S ,

[ ]0.9264 0.3369 0.1684
T=S , [ ]ˆ 0.9670 0.2417 0.0806

T=S ,

0.005µ = .
Figs. 2 and 3 show the MSE and the mean weight

behavior of the second coefficient for four different
degrees of nonlinearity. There is an excellent agreement
between theory (Eqs. (10) and (22)) and simulation results
(averaged over 1000 runs). Only one every 100 iterations
is plotted for better visualization.
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Fig. 2. MSE. Comparisons between the analytical model
(continuous) and simulations (ragged) for (a) 2 0.001η = ;

(b) 2 0.3η = ; (c) 2 0.5η = ; (d) 2 0.9η = ; where 2 2ˆ 0.8η η= ⋅
and ˆoptγ .

Fig. 4 presents the optimum penalty factor as a function
of the degree of nonlinearity. Note that it varies between
zero (linear case, 2 0η = ) and 2 2  (hard limiter,

2η → ∞ ).
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misadjustments of the conventional FXLMS (horizontal
line) and the MOV-FXLMS algorithm (curved line) for a
imperfect estimation of the secondary path ( ˆ ≠S S ) and
deviations of 2η̂ .

Figs. 5 and 6 compare the theoretical steady-state
misadjustments achieved by the conventional FXLMS
algorithm (upper horizontal line) [9] and by the MOV-
FXLMS algorithm (curved line) as a function of the ratio

22 /ˆ ηη . The results in Fig. 5 were obtained for ˆ =S S ,

while those in Fig. 6 are for SS ≠ˆ . The title on top of each
plot corresponds to the value of 2η . The vertical axes give
the misadjustment value. The horizontal axes show the
values of the ratio 2 2η̂ η . Note that the robustness of the

MOV-FXLMS algorithm increases with 2η .

Table 1. Comparisons between the minimum possible
MSE ( MINξ ), the steady-state FXLMS MSE, Eq. (23)

( THEOξ ) and simulations ( SIMξ ) of the MOV-FXLMS (in

dB) with a perfect estimation of the secondary path for a
highly nonlinear system ( 2 0.9η = ).

2 2η̂ η MINξ FXLMSξ THEOξ SIMξ

0.01 -11.5 -7.1 -7.1 -7.0

0.1 -11.5 -7.1 -7.6 -7.4

1 -11.5 -7.1 -11.5 -11.5

10 -11.5 -7.1 -9.1 -9.1

100 -11.5 -7.1 -8.2 -8.2

Tables 1 and 2 compare the minimum MSE for the
linear case ( W�  given by (16)), the steady-state MSE for
the FXLMS algorithm [9], the theoretical MSE for the
MOV-FXLMS algorithm (Eq. (23)) and the simulated
MSE obtained using the MOV-LMS algorithm with the
estimated optimum penalty factor. The results in Table 1
are for a perfect estimation of the secondary path. Table 2



repeats the results of Table 1 for an imperfect estimation
of the secondary path. Eq. (15) is solved numerically in
both cases.

Table 2. Comparisons between the minimum possible
MSE ( MINξ ), the steady-state FXLMS MSE, Eq. (23)

( THEOξ ) and simulations ( SIMξ ) of the MOV-FXLMS (in

dB) with a imperfect estimation of the secondary path with
2 0.5η = .

2 2η̂ η MINξ FXLMSξ THEOξ SIMξ

0.01 -14.6 -9.5 -13.4 -13.2

0.1 -14.6 -9.5 -13.4 -13.4

1 -14.6 -9.5 -14.6 -14.4

10 -14.6 -9.5 -10.5 -10.6

100 -14.6 -9.5 -8.8 -8.9

VII. Summary

This work presented an analysis of the MOV-FXLMS
adaptive algorithm when its adaptive signal path is
constrained by a memoryless saturation.

Deterministic equations were derived to the mean
weight and MSE behavior, for Gaussian inputs and slow
learning. Results were derived for both the transient and
steady-state phases of adaptation. Properties of the
performance surface were used to obtain an estimative to
the optimum penalty factor. The use of the optimal penalty
factor leads to maximum cancellation for a perfectly
estimated secondary path.

Monte Carlo simulations showed excellent agreement
with the analytical models. The robustness of the
algorithm to errors in the estimation of the degree of
nonlinearity was verified.

As a main result, the MOV-FXLMS algorithm with
optimized penalty factor is an interesting alternative to the
FXLMS algorithm when low-cost nonlinear hardware is
employed.

Acknowledgments

Thanks to FAPERGS (Research Foundation of the State
of Rio Grande do Sul - Brazil) and to CNPq (Brazilian
Ministry of Science and Technology) under Grant No.
352084/92-8 for funding.

References

[1] Haykin, S., Adaptive Filter Theory, Prentice-Hall, 2nd

edition, 1991.
[2] Kuo, S., and D. Morgan, Active Noise Control
Systems: Algorithms and DSP Implementations, Wiley,
1996.

[3] C. Hansen, “Active Noise Control – From Laboratory
to Industrial Implementation,” Proceedings of Noise-Con
97, USA, Pennsylvania, pages 3-38, 1997.
[4] W. Klippel, “Nonlinear Large-Signal Behavior of
Electrodynamic Loudspeakers at Low Frequencies,”
Journal of Audio Engineering Society, vol. 40, No. 6,
pages 483-496, 1992.
[5] P. Darlington, and G. Xu, “Equivalent Transfer
Functions of Minimum Output Variance Mean-Square
Estimators,” IEEE Trans. on Signal Processing, vol. 39,
No. 7, pages 1674-1677, July, 1991.
[6] K. Mayyas, and A. Tyseer, “Leaky LMS Algorithm:
MSE and Analysis for Gaussian Data,” IEEE Trans. on
Signal Processing, vol. 45, No. 4, pages 927-934, April,
1997.
[7] M.H. Costa, J.C.M. Bermudez and N.J. Bershad,
“Stochastic Analysis of the LMS Algorithm with a
Saturation Nonlinearity Following the Adaptive Filter
Output,” IEEE Trans. on Signal Processing, vol. 49, No.
7, pages 1370-1387, July, 2001.
[8] J.C. Bermudez and M.H. Costa, “Optimum Leakage
Factor for the MOV-LMS Algorithm in Nonlinear
Modeling and Control Systems”, ICASSP 2002, USA,
Orlando, 2002.
[9] M.H. Costa, J.C.M. Bermudez and N.J. Bershad,
“Stochastic Analysis of the Filtered-LMS Algorithm in
Systems with Nonlinear Secondary Paths,” to appear in
the June 2002 issue of IEEE Trans. on Signal Processing.
[10] M.H. Costa, Behavior of the FXLMS algorithm in
Systems with a Nonlinear Secondary Path: Application to
Active Noise Control, Ph.D. Thesis (in Portuguese),
Federal University of Santa Catarina, Brazil, 2001.


