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Abstract—In this paper a genetic algorithm is used in the design of a lin-
ear antenna array, aiding the designer to find the best antenna for his ap-
plication. The designer indicates the number of elements of the set, the di-
rection of the main lobe, the side lobe level, and the half-power beamwidth.
In this methodology the objective function takes into account the ampli-
tudes and phases of the feeding currents, and the position of each of the
elements of the array simultaneously. With this approach, the optimiza-
tion process covers a larger search space, allowing the designer to achieve a
higher number of feasible solutions. Some examples illustrate the potential
of the genetic algorithm applied to antenna array designs.

I. I NTRODUCTION

The goal of this paper is to provide a methodology for the
synthesis of an antenna array based on a genetic algorithm (GA).
The GA was chosen as the optimization method because it gen-
erally allows the achievement of feasible structures, which fre-
quently does not occur with other optimization methods.

The linear antenna arrays have been widely employed in mo-
bile communication systems. Antenna arrays are flexible, allow-
ing to control the direction of radiation, gain, side lobe level, etc
[1]. Thus, it is an interesting technology that can be applied to
smart antennas in future third generation (3G) communication
systems.

The implemented algorithm yields the several solutions that
are near to the optimum response. It is interesting because the
designer has the opportunity to choose the most feasible solu-
tions for physical implementation.

Many approaches for antenna array design have been devel-
oped. However, these approaches use simplifications that re-
strict the size of the the search space. In most cases the linear
array is symmetric regarding to its centre [2–4]. Thus, only half
of the elements of the array need to be actually handled. More-
over, some algorithms work with constant distances and phase
differences between the elements of the array [3–6].

The methodology proposed in this paper is flexible and inno-
vates by allowing the synthesis of a non-symmetric linear an-
tenna array. Additionally, all of the antenna parameters can be
optimized. This allows the designer to find optimized structures
through the variation of the number of elements of the array, the
amplitudes and phases of the feeding currents, and positions of
the elements. These modifications increase the number of pos-
sible design solutions.

II. L INEAR ARRAY ANTENNA

The radiation pattern of the antenna array is determined by
the types of elements used and their spatial positions, and by the
amplitudes and phases of the feeding currents of the elements.

The array factor was used to simplify the computation, where
each array element is considered as an isotropic punctual source.

The array factor (AF) is given by the following expression
[7]:
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It is assumed that the array is linear and has the reference axes
in the first element. The parameters of (1) are
� = number of elements in the array;
� = phase propagation factor;
� = elevation angle;
� = azimuthal angle;
�� = amplitude weight of element	;

 = spacing between elements;
� = relative phase between adjacent elements.
It can be noticed in (1) that the elements of the array are uni-

formly spaced and the phase difference between them is con-
stant. It is not desirable because it decreases the degree of free-
dom of the antenna design. To solve this problem, expression
(1) can be generalized in such a way that all parameters can be
handled. The resulting expression is the following:
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where

�� = position of the element	;
�� = phase weight of element	.
Fig.1 shows the position of the elements in the axis-�. The

spacings and the amplitudes and phases of the feeding currents
of each element can be set to any value.

The case in which a wave is incident on the array in the�–

plane so that� � ��� in (2) is considered in this paper. This is
a reasonable approximation for smart antenna applications, es-
pecially in cellular and Personal Communications Systems [8].



The parameters of an antenna array considered in this paper
are the main lobe direction, the side lobe level, and the half-
power beamwidth. The side lobe level (SLL) is defined as the
ratio between the peak value of the larger side lobe and the peak
value of the main lobe. The width of the main beam is quantified
through half-power beamwidth (HP), which is the angular sep-
aration of the points where the main beam of the power pattern
equals one-half the maximum value [7].
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Fig. 1. A diagram of a nonuniformly spaced linear array.

III. T HE GENETIC ALGORITHM

The genetic algorithm is inspired on the evolution mechanism
and uses the concepts of the origin of the species and of natural
genetics, proposed by Darwin and Mendel, respectively.

GA optimizers are robust, stochastic search methods modeled
on the principles and concepts of natural selection and evolution
[5].

GAs were introduced by John Holland in the seventies as a
special technique for function optimization [9]. They differ from
most optimization methods and they have the following charac-
teristics [10]:
1. They work with a coding of the parameters set, not the pa-
rameters themselves.
2. They search for many points instead of a single point.
3. They don’t use derivatives or other auxiliary knowledge.
4. They use probabilistic transition rules, not deterministic
rules.

Since the GA has a strong inspiration on the theory of the
evolution of the species and on the natural genetics, many terms
from biology are used. For example, it is known that any indi-
vidual is composed by a set of chromosomes. Then, an analogy
between individual and chromosome is done in the GA.

The flowchart in Fig.2 shows the cycle of the GA. Before the
GA execution, the parameters (genes) to be controlled by the al-
gorithm must be defined. Additionally, the specific fitness func-
tion must also be described. The aim of the fitness function is to
determine a fitness value for each individual of the population.

Each individual represented by a chromosome is built by bi-
nary codification of the real parameters of the problem. The
algorithm starts with the random generation of the individuals
of the population, which are possible solutions for the problem.
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Fig. 2. The genetic algorithm cycle.

All of the generated individuals (parents) are evaluated by the
fitness function. The nature selection, the crossover, the muta-
tion, and the elitism are genetic operators used to manipulate the
individuals. They are used to search the most adapted individu-
als which are better solutions for the proposed problem.

The idea of natural selection is similar to that presented by
Darwin in his theory of the origin of species. The most adapted
individuals of the generation have higher probabilities to survive
and therefore have higher probabilities to participate in the pro-
cess that generates the next population. After each individual is
evaluated, a binary tournament is carried out. This tournament
is performed in order to choose randomly the mates that will
participate in the crossover process [5].

Two individuals are randomly selected from the population to
form a pair of mates. The one that has the best fitness value is the
first element of the couple. The second one comes from a new
draw of two individuals. The one with better fitness remains.
A couple is composed by different individuals but an individual
can participate of several crossovers.

Each previously selected couple crosses, with a given proba-
bility, generating then two new individuals of the next genera-



tion. The crossover happens with the random change of genetic
material between the elements of the couple (parents). The type
of crossover implemented exchange the bits between two cut
sites.

The mutation is of fundamental importance because it allows
the sweeping of the entire search space of solutions. Depending
on the initial population, without using the mutation operator,
an acceptable solution may not be found. The mutation helps to
avoid a local minimum and guarantees the genetic diversity of
the population. The mutation mechanism consists of changing
(1 to 0 or 0 to 1) one or more bits of the chromosome with a
given probability [6].

In order to preserve the best individuals of the population, i.e.
the best solutions, the elitism mechanism is implemented. This
mechanism ensures that the most adapted individuals will be in
the new population. In the case in which the best individual
of the old population is not better than the worst of the new
population, elitism does not occur.

The population evolves until the end of a pre-defined num-
ber of iterations (generations) or when a stopping criterion is
reached. In the stopping criterion, the performance of the popu-
lation is analyzed in order to evaluate if the desired goals were
achieved. The stopping criterion that can be used is: if a given
percentile of individuals approximately meets the design goals,
the optimization process ends and these individuals are taken as
solutions of the problem [10].

Fig.3 illustrates the result of the GA applied to an example. It
shows the fitness values of the individuals of the population. In
this example ninety individuals constitute the population and the
maximum fitness value is 30. It can be seen that there are some
individuals presenting fitness values very close to the maximum.
The others are in an intermediate range and there are some with
low fitness values. The achievement of more than one good so-
lution demonstrates the versatility of the GA.
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Fig. 3. Result of the genetic algorithm.

IV. FITNESSFUNCTION DEFINITION

The fitness function is an important factor for the success
of the optimization based on a genetic algorithm. In this pa-

per, we use a special function to achieve a desired direction
(��), a desired side lobe level (����), and a desired half-power
beamwidth (���).

The fitness function used in the algorithm is composed by a
sum of three Gaussian functions, each one representing one of
the parameters mentioned above.
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where

�� = main lobe direction;
��� = side lobe level;
�� = half-power beamwidth.
The values of�� and��, � � �� �� �, vary accordingly with

the objective of the design.�� represents the weight of each
term of the fitness function.

The proposal of the Gaussian behavior has the objective of
providing an improved control of the sensitivity of the fitness
function regarding to the optimization parameters, as well as, to
avoid the predominance of one of the search parameters over the
others by equally distributing the contributions of each parame-
ter.

V. RESULTS

To demonstrate the potential of the proposed methodology,
the design of a linear antenna array with five elements equally
spaced by��	� was carried out. As an example, an array with
main lobe direction�� � 
�Æ, side lobe level���� � ���
�,
and half-power beamwidth��� � ���	Æ was designed. These
values were chosen to show the efficiency of the algorithm
through the comparison with an antenna array presenting a bi-
nomial current amplitude distribution (� � � � 
 � � � �) and the
current phases of the feeding currents of the elements are null.

The results were obtained by using a linear array with five
isotropic punctual sources. Uniform distances of��	� between
array elements were considered in the design. The optimiza-
tion parameters were the amplitudes and phases of feeding cur-
rents of the elements. The amplitudes were distributed linearly
in eight different levels along the range 0 to 7 and codified using
3 bits. When the amplitude is zero the corresponding element
can be taken out of the array. The phases were coded using 12
bits along the range 0 to�
�Æ.

In this paper, the weight of terms of the fitness function were
�� � �� � �
 � ��, �� � ����,�� � ��� and�
 � �	�.

The GA was processed for a population of 80 individuals.
This amount of individuals obeys the heuristic that states that
the number of bits in a chromosome must equal the number
of individuals (chromosomes). Table I presents the values of
the main lobe direction, the side lobe level, and the half-power
beamwidth obtained for the four best results. Figs.4 and 5 show,



TABLE I

VALUES OBTAINED FOR THE ARRAYS OF FIVE ELEMENTS.

Array � (degrees) SLL (dB) HP (degrees)
1 90.0 -40.0 30.5
2 90.6 -40.0 30.5
3 89.4 -40.0 30.5
4 90.0 -40.0 30.0
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Fig. 4. Amplitude of the array elements scaled from 0 to 7.

respectively, the feeding amplitudes and phases of these four so-
lutions.

Fig.6 illustrates the radiation pattern presented in [7], as well
as the radiation pattern of the best array. The distribution of the
amplitudes of the feedings currents are given by� � � � � � 
 � �
and the phases are���
Æ � �Æ � �	
��Æ � 
��Æ � �	�
Æ. This result
shows that it is possible to obtain radiation patterns by applying
different current excitations in the elements.

In Fig.5 it can be noticed that one of the results presents el-
ements with almost constant phases. It makes the physical im-
plementation of the antenna array easy, because the number of
circuits for array operation is reduced.

Based on Table I it can be seen that the results are close to the
design goals. Figs.4 and 5 and Table I also show the potential-
ity of the GA in the design of an antenna array. By generating
several arrays that meet the specifications, the most suitable one
(regarding technology and application) can be chosen.

In a second example, variations of the distances between ele-
ments (���	� to ��
�	�) were allowed (4 coding bits). The aim
is to show that it is also possible to achieve results with arrays
presenting low dimensions.

Table II shows the spacings between the elements for four
arrays obtained along the optimization process that meet the de-
sign goals. From this table it can be noticed that the final dimen-
sion of the arrays can be reduced by applying the methodology
proposed in this paper.

Fig.7 illustrates the expected radiation pattern and the one of
the array with the lower dimension achieved. The current ampli-
tude distribution in the five elements is� � � � � � � � � and the
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Fig. 5. Phase of the array elements scaled from 0 to���
Æ.

phase distribution is��
��Æ � 
���Æ � ��
�
Æ � �����Æ � �����Æ.
For this antenna array the obtained main lobe direction was
�
�
Æ, the side lobe level was��
��
�, and the half-power
beamwidth was���	Æ. These results are within the error range
of 10%.

VI. CONCLUSION

By using a genetic algorithm as an optimization method, a
methodology applied to the design of antenna arrays was de-
veloped. In this methodology, it is possible to simultaneously
define the main lobe direction, the side lobe level, and the half-
power beamwidth of the antenna array. A new strategy to formu-
late the fitness function was also presented. This scheme showed
efficiency in obtaining the desired array behavior, avoiding the
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Fig. 6. Field linear normalized radiation pattern of the best array obtained
(- - -) and the one (—) presented in [7]. The linear array is equally spaced.



TABLE II

SPACINGS OBTAINED FOR THE ARRAYS WITH FIVE ELEMENTS.

Array 
� (�) 
� (�) 

 (�) 
� (�)
1 0.300 0.375 0.325 0.325
2 0.550 0.575 0.475 0.425
3 0.325 0.375 0.300 0.350
4 0.250 0.375 0.375 0.275
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Fig. 7. Field linear normalized radiation pattern of the best array obtained
(- - -) and the one (—) presented in [7]. The linear array is nonuniformly spaced.

predominance of one characteristic over the others. Examples
considering linear antenna arrays with five isotropic elements
were shown. The results obtained were compared with the ones
in the bibliography. The methodology presented in this paper
allows the attainment of a multitude of antenna arrays that meet
the design goals. This is an interesting characteristic because
the designer will be able to choose the most suitable one with
respect to physical implementation and costs.
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