
Close Approximations for Daublets and their Spectra 

Abstract—This paper offers a new regard on compactly 
supported wavelets derived from FIR filters. Although being 
continuous wavelets, analytical formulation are lacking for such 
wavelets. Close approximations for daublets (Daubechies 
wavelets) and their spectra are introduced here. The frequency 
detection properties of daublets are investigated through 
scalograms derived from these new analytical expressions. These 
near-daublets have been implemented on the MatlabTM wavelet 
toolbox and a few scalograms presented. This approach can be 
valuable for wavelet synthesis from hardware or for application 
involving continuous wavelet-based systems, such as wavelet-
OFDM.  

Keywords-Wavelets, compactly support, Fourier, Scalogram, 
OFDM. 

I.  INTRODUCTION 

Wavelets have lately gained prolific applications 
throughout an amazing number of areas, especially in Physics 
and Engineering [1]. Both Continuous and Discrete Wavelet 
transforms (CWT and DWT, respectively) have emerged as a 
definitive tool of signal processing analysis and have proven to 
be superior to classical Fourier analysis in many situations [1–
3]. Continuous wavelet transform furnishes precise information 
on the local and global regularity [4] is very robust to spurious 
contamination of the signal. It has also been used in damping 
identification [5], analysis of seismic signals [6] and detection 
of singularities [4], among many other applications. A number 
of continuous wavelets do have analytical close expression, 
such as Morlet, Meyer, Mexican hat, Shannon, beta etc. [3, 7]. 
However, an astonishing, but well established feature of 
wavelets is that in many cases the signal analysis can be carried 
out without knowing the analytical expression of the mother 
wavelet. This fact is particularly true for most compactly 
supported wavelets [7]. The plot or the generation of the 
waveform of both the wavelet and the scaling function is 
always performed by an iterative numeric approach (cascade 
algorithm). How could one generate a db waveform without 
exploiting numeric successive approximations? This paper 
offers an (approximate) analytical solution, which turns 
straightforward to handle with db-type wavelets (e.g. coiflets). 
The paper is organized as follows. Section II introduces the 
idea of inharmonic series as some sort of generalization of 
standard Fourier series. The derivation of analytical 
expressions for dbN wavelets is carried out in Section III, and 
tight continuous approximations are supplied both in time and 
frequency domain. The investigation of the frequency detection 
properties of dbN wavelets were addressed in Section IV 
through scalograms. Although scalograms suggest a poor 
detection feature, it is shown that dbN actually have good 
frequency detection properties. Section V presents some 

potential applications of the analytical formulation of 
Daubechies wavelets in the framework of Telecommunication. 
Finally, some concluding remarks are presented in Section VI. 

II. INHARMONIC SERIES ANALYSIS 

Let us consider a compactly supported wavelet (t) 
defined in the interval [0, T], where  

T :=  length (supp(t))                        (1) 

is the length of the support of the wavelet [1]. The classical 
model (Fourier) to represent a signal [2] within a window of 
length T is given by: 
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There are harmonic components with a fundamental 2/T. 
Instead of this standard well-known model, we deal with an 
unbounded supported Fourier-like wavelet representation, 
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where the frequencies k are no more harmonic frequencies.  
Within the wavelet support, long(t) = (t), where (t) is the 
wavelet. Imposing now the oscillation condition to the wavelet 
[7], it follows that 
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In order to assure a zero-mean for the wavelet, a possible 
condition is that each integral in the former equation vanishing, 
giving  
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This can be rewritten as  

(1 cos(kTk)).(cos(k) + sin(kTk).(sin(k) = 0, k. 

Here, some phase constraints are introduced, namely 
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From that above mentioned condition, it can be derived the 
following relationships: 

1) Finding out the phase angles k  in terms of the 
frequencies components k, 
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2) Another very interesting view is to determine the 
frequencies k in terms of the k.  Hence it follow that: 
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where xk := cos(kTk). 
 

The (non trivial) solution of interest is 
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In the sequel, a new analytical model is proposed to 
represent compactly supported wavelets in the interval [0, T]. 
This will be referred to as inharmonic series of a wavelet, 
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The non-equally spaced frequencies of the decomposition 
are 

 2

2

1 1 ( )

1 ( )
2 1 cos ,k

k k

tg

tgT Tk



  



                  

(11) 

which are rather similar to the harmonic perturbations 
mentioned in [8] and derived from the wavelet oscillatory 
condition: 
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The frequencies present in this series expansion are no 
more harmonic frequencies such as (0, 20, 30, …, 0:= 
2/T), but rather have perturbations inserted so as to guarantee 
a zero mean for the wavelet. This can be called an inharmonic 
decomposition of a wavelet. 

 

III. THE ANALYTICAL (CLOSE) EXPRESSIONS FOR TIME AND 

SPECTRUM DOMAIN OF DAUBECHIES WAVELETS 

In this section we derive approximations for both the dbN 
wavelets and their spectra. 
 

A. Time Domain Analysis 

The analytical (close) expression to implement a fairly 
accurate daublet in the time domain is 
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This expression is a sum of sin functions with coefficients 
of amplitude, frequency and phase, assembled through 
nonlinear least square method with Levenberg-Marquardt 
robust algorithm [9, 10]. Typically just eight to ten terms are 
enough to get the Daubechies (dbN) wavelets with 99.99% of 
confidence level.  

Table I shows the coefficients ak, bk, ck required to perform 
close approximations for db4, db6 and db8 daublets. 
Description of such wavelets can be found in [1, 7]. 

Identical analytical (close) formulation can be used to 
perform approximations for daublets scale function ((t)), by 
just using another set of coefficients.  

The coefficients associated with Daubechies scaling 
function are showed in Table II. It can be remarked that they 
maintain the same features as previously reported to generate 
approximations for compactly supported wavelet functions. 

 

TABLE I.  COMPUTED COEFFICIENT TO APROXIMATE DAUBECHIES 

WAVELET  FUNCTIONS ACCORDING TO (1) FOR DB4, DB6, AND DB8 
WAVELETS. 

 db4  

k 
ka  bk ck 

1 0.3452 4.586 -2.316 
2 0.2783 3.460 1.413 
3 0.3015 5.770 -0.373 
4 0.2129 6.960 -4.943 
5 0.1293 2.414 -1.794 

6 0.1120 8.161 -3.225 

7 0.0295 9.366 -7.567 

8 0.0223 1.372 1.102 

 db6 

k 
k

a  bk ck 

1 0.2623 4.850 -1.655 
2 0.2520 3.993 3.014 
3 0.2287 5.724 0.649 

4 0.1778 3.197 0.649 

5 0.1729 6.590 -5.635 

6 0.1098 7.459 -4.613 

7 0.0820 2.436 4.117 

8 0.0504 8.333 -9.828 

 db8 

k 
ka  bk ck 

1 -0.2054 5.066 -17.48 
2 0.1334 3.116 -6.671 
3 0.1926 3.720 -10.66 

4 -0.0622 2.532 -12.39 

5 0.2145 4.379 -15.39 

6 0.1768 5.750 -26.04 

7 0.1360 6.419 -25.21 

8 -0.0917 7.081 -27.53 

9 -0.0468 7.740 -32.94 

 



TABLE II.  COMPUTED COEFFICIENTS TO APPROXIMATE DAUBECHIES 

SCALES FUNCTIONS ACCORDING TO (10) FOR DB4, DB6 AND DB8 
WAVELETS. 

 db4 

k ka  bk ck 

1 0.3762 0.672 0.171 
2 0.2113 3.226 -2.404 
3 0.3900 1.204 0.939 

4 0.0770 4.193 2.098 

5 0.2661 2.384 -1.379 

6 0.0081 5.586 -1.379 

7 0.0226 8.537 -1.184 

8 0.0205 9.424 3.346 
 

 db6 

k ka  bk ck 

1 0.2247 0.648 1.540 
2 0.1244 1.323 -0.241 
3 0.3148 2.333 -1.329 

4 0.0111 0.032 0.8670 

5 0.3007 2.084 -2.628 

6 0.0489 4.087 -5.627 

7 0.1224 3.019 2.881 

8 0.0935 3.728 0.425 

9 0.0296 0.338 0.208 

10 0.2088 0.342 0.735 

 db8 

k ka  bk ck 

1 0.1417 -0.004 1.617 
2 0.1214 1.697 -1.584 
3 0.1480 2.174 -2.969 

4 0.1840 -0.271 0.929 

5 0.1603 2.544 -3.420 

6 0.1057 2.934 -4.170 

7 0.1136 3.586 -1.468 

8 0.0877 3.759 -0.154 

9 0.1234 0.907 -0.523 

10 0.1419 1.239 -0.457 

 

Now, taking db4 coefficients as a reference and setting bk 
in ascendant order, we can apply (10) so as to retrieve the 
corrections terms around k0 corresponding to db4 
inharmonics (9). Table III displays these correction terms of 
fluctuation on the harmonic components of the series. The 
values of k, in contrast with those of Table I, now correspond 
to the order of the harmonic components in the series, with 
w0= 2 /7. 

B. Spectrum Domain Analysis. 

The analytical (close approximations) expression in the 
spectrum domain for Daubechies wavelets is given by: 
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This expression is the Fourier pair with the inharmonic 
series long(t).  Clearly, merely Dirac impulses appear 
representing sin functions on the spectrum of the periodic 
approximation of the analyzed wavelet [11]. As an example, let 
us consider the inharmonic expansion of a standard wavelet 
such as db6. The spectrum of the unbounded periodic 
approximated wavelet long db6 is shown in Fig.1. 

 

TABLE III.    COMPUTED K COEFFICIENTS REQUIRED TO APPROXIMATE 

DAUBECHIES WAVELET ACCORDING TO (10) FOR THE DB4 WAVELET. 

  db4 harm. inharm. 
k bn k.w0 k 
1 1.372 0.898 0.474 
2 2.414 1.795 0.619 
4 3.460 3.590   -0.130 
5 4.586 4.488 0.096 
6 5.770 5.386    0.384 

7 6.960 6.283 0.677 

9 8.161 8.078 0.083 

10 9.366 8.976    0.390 

 

In order to determine the “true” db6 spectrum, the 
wavelet  6  must be confined in its support, according 
to: 

                             
 5.5
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where  denotes the standard gate function and T:=2N-1=11 
is the length of the support of the db6 wavelet [1]. 

The spectrum of  
 6  is easily derived by using the 

convolution theorem [7], and since that    6   
computation involves only impulses, it corresponds to a 
superposition of sinc functions (Fig. 2). 

 

 

Figure 1.   Spectrum of the approximated close expression, long db6, used as a 
model for db6. longdb6() is the Fourier transform pair with the inharmonic 

series   t  for db6. 
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Figure 2.  Spectrum of short db6 wave: the sinc pulses are superposed so as 
to construct the continuous wavelet spectrum, which refers to the support 

confinement (truncation in the time domain). 

An analytical (tight) expression for the db6 spectrum is 
given by 
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Here, T is the length of the db-wavelet support and the 
constants ak and bk are obtained from the approximations as 
described in the Table I. This is a native analytical expression 
for deriving the daublet spectrum. The shape of db6 spectrum 
is shown in Fig. 3. 

C. Build daublet continuous approximations in MatlabTM 
wavelet toolbox. 

With the aim of investigating some potential applications of 
such wavelets, software to compute them according with the 
derived analytical close approximations should be written. 
Nowadays, one of the most powerful software supporting 
wavelet analysis is the MatlabTM, especially when equipped 
with the wavelet graphic interface. 

In the MatlabTM wavelet toolbox [12], there exists five 
kinds of wavelets (type the command waveinfo on the prompt): 

 
 

Figure 3.    Result of the sinc sums, now    , in Fig.2: this is the 
same db6 wavelet spectrum 

(i) crude wavelets; (ii) Infinitely regular wavelets; (iii) 
Orthogonal and compactly supported wavelets; (iv) 

biorthogonal and compactly supported wavelet pairs; (v) 
complex wavelets. Type (iii) wavelets present as a rule a scale 
function and possess closed expressions. However, only a few 
wavelets in the standard 1-D wavelet ensemble (haar, db, sym, 
coif, bior, rbior, meyr, dmey, gaus, mexh, morl) hold this 
feature. Just Meyer wavelet is assumed as type 3 wavelet, but 
it is not compactly supported. In spite of scaling function do 
exist for "dbN", these wavelets are not available as type-3 
wavelets, since analytical expressions are lacking.  

This paper fills this gap by providing simple analytical 
expressions for both wavelet and scale function of dbN. The 
near-daublet expressions (for wavelet and scale functions) 
have been implemented in MatlabTM wavelet toolbox [12] as 
illustrated in Fig. 4 - 5, with the family name cdbN. In fact, 
cdbN is not a new family of wavelets, since it corresponds to 
dbN. However, for the sake of convenience, cdbN is used as a 
notation to sign that continuous approximations are used in the 
implementation of dbN. Potential applications of such dbN 
approximation are presented in the section V. 

 
 

 

Figure 4.   Example of cdb4 near-daublet implemented in MatlabTM wavelet 
toolbox. 

 

 

 

Figure 5.   Display of cdb6 near-daublet in MatlabTM wavelet toolbox. 
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The wavelet display supplies indistinguishable waveforms 
as compared with those generate by the cascade algorithm 
(with more than 8 iterations). Here, these plots using the close 
expressions are inserted merely to illustrate that the close 
formulas derived in this paper actually work. 

IV. HAVE DBN POOR OR GOOD FREQUENCY DETECTION 

PROPERTIES? 

The tools well suited for a spectral analysis of signals are 
those based on the FFT. Spectrograms are a powerful 
technique to investigate the frequency content in the time-
frequency plane. Although wavelets are not specifically 
designed for carrying out spectral analysis, it can also recover 
some spectral information. The corresponding analysis in the 
wavelet scenario is performed using the scalogram, which 
provides location of frequency information, with wavelet-
dependent accuracy [1]. On MatlabTM, the frequency 
information, related to the scale, is normally retrieved by 
scal2frq command that computes a correspondence table of 
scales and frequencies (factor table scale) [12]. Some wavelets 
are able to detect the frequency location very well and they 
typically have analytical representation in the time domain. 
Since this paper has offered an analytical expression for dbN, 
we decide to investigate the frequency detection properties of 
such wavelets using scalograms.  

As an example, let us considerer the frequency location 
detection properties of db4 applied to a sum of two periodic 
signals with frequencies normalized 10 and 40. Fig. 6 plots the 
continuous time db4 wavelet analysis for that signal. 

At a first glance, the evaluation provided by Fig. 6 
suggested that db4 grants poor frequency detection properties, 
such as Haar (db2) [12]. Nevertheless, this is misleading and 
deserves a deeper investigation. The scalogram can be plotted 
in a 3D-representation as shown in Fig. 7.    

In Fig. 7 the maxima energy connecting points can be 
examined in other viewpoint. It is observed that the 3D signal 
derived from the db4 analysis has displaced peaks in time. 

 

 

Figure 6.   Plot of the connecting of maxima energy in the scalogram derived 
from the analysis with cdb4. a) analyzed signal, b) corresponding scalogram. 

 
Figure 7.  3D-scalogram plot for the analysis of the signal Fig.6a with cdb4. 

 

Such maxima have also a small scale displacement and the 
wavelet analysis ponders the lower peaks. Surprising, the most 
weighted group of peaks was correctly done, because they 
have greater amplitude. Nevertheless, due to a parallaxes 
error, this cannot be correctly observed in a standard 2D-
scalogram such as that one shown in Fig. 6.  Thus, we bring 
attention to the fact that 2D-scalograms seem suggest a poor 
detection feature for dbN, but this is fallacious.       
.      

V. ON POTENTIAL APPLICATIONS OF THE ANALYTICAL 

DAUBLET APPROACH 

Despite the fact of analytical expressions for the time and 
spectra of continuous wavelets are known [1, 3] for both 
infinite supported wavelets (Shannon, Morlet, Mexhat, Meyer, 
de Oliveira) and compactly supported wavelets (Haar, hat, 
beta), very useful and powerful wavelets like the daublets 
(coifflets, symlets) do not present this feature. Wavelet has 
long been used as a powerful and deep rooted tool in signal 
analysis with applications in several different fields such 
medicine, power control, image compression, voice encoder. 
An extensive list of applications in Telecommunications can 
be found in [3]. Among them it can be mentioned a spread-
spectrum system based on finite field wavelets [13], a digital 
wavelet-based modulation (wavelet-shift keying) [14], a 
multiresolution division multiplex [15]. The (AM) modulation 
theorem is one of the most celebrated and widely applied 
results of the Communication Theory [11]. By the same token 
as standard analog modulations, two kinds of “wavelet 
modulation” between a signal f(t) and a continuous wavelet 
a,b(t) used as a (short pulses) carrier [16] can be devised 
using the analytical expressions proposed in this paper.  

Recent research focused on the multi-carrier transmission 
techniques [17, 18], highlighted that some of disadvantages 
inherent in OFDM systems can be steadily counteracted using 
wavelet carriers instead of OFDM complex exponential 
waveforms. Due to the fact that these wavelet carriers provide 
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orthogonality between subcarriers and spectral containment, 
besides they can be separated at the receiver side by 
correlation techniques [19, 20]. The applications above 
reported, do already use wavelet carrier like Haar and 
Daubechies families, but need iterating process to implement 
that wavelet. Same processes are also required in 
communication channel applications such as jamming, 
intersymbol interference (ISI), adjacent channel interference 
[21]. 

VI. CONCLUDING REMARKS 

This paper offers a new reading of compactly supported 
wavelets derived from FIR filter, which was implemented 
through a robust algorithm and guarantee close 
approximations. Daublets properties of both the scaling 
function and the mother wavelet were maintained. Therefore, 
this new focus on the db wavelet family can be used to a 
number of applications where analytical expressions are 
indispensable. Time (13) and spectrum (16) close expressions 
for dbN wavelets are supplied. These wavelets have been 
implemented on MatlabTM (wavelet toolbox) and an 
application to 3D-scalograms for detection the maxima energy 
peaks is shown. Arguments that dbN provides good 
localization properties are presented.  

This new wavelet approach seems to be particularly 
suitable as natural candidate to replace the daublets where they 
would have good performance, involving continuous wavelet-
based systems, such as wavelet-OFDM, without additional 
computational resources to build them. As a future work, all 
this procedure can be naturally developed for coiflets and 
symlets or further discrete wavelet functions, just searching 
the suitable coefficients to provide the continuous 
approximation analytical formula. 
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