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Abstract—We consider the discrete-time gated multiple-vacation queue.
Vacations are modeled as independent random variables with distributions
depending on the number of the immediately preceding vacations. Using a
probability generating function approach, we focus on various performance
measures such as moments of queue contents and customer delay in equi-
librium. These measures are functions of a constant value which we obtain
numerically.

I. I NTRODUCTION

Vacation models [1], [2] have proven to be a useful abstrac-
tion of server unavailability in cases where classes of customers
contend for a single resource such as polling systems [3] and pri-
ority systems [4], or in cases where this resource is unreliable,
e.g., maintenance models [5] and ARQ-systems [6].

The current contribution investigates the gated multiple-
vacation queue in discrete time. Our generalized multiple-
vacation queueing model allows to capture performance of
a.o., the multiple-vacation, the single-vacation and the limited
multiple-vacation gated queueing systems. The model under
consideration extends the results from [7] both regarding arrival
and vacation process and regarding the performance measures
under consideration.

The outline is as follows. In the next section we describe
the queueing system under consideration in more detail. The
analysis is then presented in sections 3 and 4, whereas some
special cases are considered in section 5. Numerical examples
illustrate our results in section 6 and conclusions are drawn in
section 7.

II. M ODEL

We assume that time is divided into fixed length intervals
(slots) and that service is synchronized with respect to slot
boundaries, i.e., service of a customer cannot start during this
customer’s arrival slot. Both the number of customers arriv-
ing in the consecutive slots and the service times (in slots) of
these consecutive customers constitute series of i.i.d. random
variables with common probability mass functionsan (n ≥ 0)
andsn (n > 0) respectively and with corresponding probability
generating functionsA(z) andS(z) respectively.

There are 2 queues, separated by a gate. Arriving customers
first wait in the queue before the gate and move in batch to the
queue after the gate whenever the latter opens. This happens at
the end of the last slot of a vacation period (see further). We re-
fer to the queues before and after the gate as the secondary and
the primary queue respectively, i.e., customers arrive in the sec-
ondary queue, move to the primary queue when the gate opens
and are then served – in order of arrival (FIFO) – before leaving
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the system. Both primary and secondary queues have an infinite
capacity.

A vacation starts when the primary queue empties, (i.e., since
the end of the last vacation) and the gate opens at the end of
each vacation. If there are no customers present in the primary
queue upon returning from a vacation, the server immediately
takes another vacation. This continues until the primary queue
is no longer empty, i.e., we consider a multiple-vacation policy.

The consecutive vacation lengths (in slots) are modeled by
means of a series of independent random variables with prob-
ability mass functionsvi(n) (n > 0) and corresponding prob-
ability generating functionsVi(z) depending oni, the number
of immediately preceding vacations. We assume there exists a
finite upper boundL such that,Vk(z) = Vl(z) for all k, l ≥ L.

III. QUEUE CONTENTS

The system under consideration alternates between busy-
periods – the system serves a customer – and vacation-periods
– the system takes (possibly multiple) vacations. A cycle is
defined as a busy period followed by a vacation period. Dur-
ing a busy period, all customers in the primary queue are being
served, while the secondary queue is filling with the newly arriv-
ing customers. At the end of the busy period, the server enters
the vacation period and at the end of the latter, all customers
in the secondary queue are transferred to the primary queue.
Clearly, the number of customers present in the system – i.e.,
in the primary and secondary queue – immediately after a cycle,
equals the number of customers that arrived during this cycle as
a vacation is only taken when all customers that arrived before
the start of the cycle, are served.

Let ck denote the slot following thek-th cycle and letUi de-
note the number of customers in the primary queue at the begin-
ning of sloti, then, one easily establishes,

Uck+1 =
Uck∑
i=1

Si∑
j=1

Aij + Wk+1, (1)

whereSi denotes the service time of thei-th customer served
during thek-th cycle, whereAij denotes the number of arrivals
during thej-th service slot of this customer and whereWk+1

denotes the number of arrivals during the vacation period in the
(k + 1)-th cycle. Note that there are no customers present in
the secondary queue at the beginning of a cycle. LetUck

(z)
denote the probability generating function of the number of cus-
tomers in the system at the end of thek-th cycle, some standard
z-transform manipulations then yield,

Uck+1(z) =Uck
(S (A (z))) W0(z)

+ Uck
(S (x a0)) (W0(z) − W0(z)),

(2)
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whereW0(z) andW0(z) denote the probability generating func-
tions corresponding to the number of arrivals during the vacation
period of the(k + 1)-th cycle given that there are no customers
or given that there is at least one customer in the system at the
end of the slot preceding the vacation period respectively.

As the presence of customers before the start of the vaca-
tion period implies the presence of customers at the end of
the first vacation, the server takes only a single vacation, i.e.,
W0(z) = V0(A(z)). If there are no customers in the system,
the server keeps on taking vacations until there is at least one
arrival. Conditioning on the number of necessary vacations then
yields,

W0(z) =
L−1∑
i=0

(Vi(A(z)) − Vi(a0))
i−1∏
j=0

Vj(a0)

+
VL(A(z)) − VL(a0)

1 − VL(a0)

L−1∏
j=0

Vj(a0).

(3)

Let Uc(z) � limk→∞ Uck
(z) denote the probability gener-

ating function corresponding to the number of customers at the
end of a cycle in equilibrium. Similarly as in [7], one can prove
that the latter exists whenever,

ρ = S′(1) A′(1) < 1, (4)

whereρ denotes the system load. Under the assumption of equi-
librium, equation (2) yields,

Uc(z) = Uc(S(A(z))) W0(z) + K (W0(z) − W0(z)), (5)

whereK = Uc(S(a0)) denotes the probability that the sec-
ondary queue is empty at the beginning of a vacation period.
The former functional equation allows implicit determination of
the various derivatives ofUc(z) evaluated inz = 1 onceK is
determined.

The unknownK can be determined numerically as follows.
Consider the serieszi = S(A(zi−1)), z0 = 0, i > 0. Given
ρ < 1, one easily proves that this series converges to1. Let
yi �

K
Uc(zi)

, substitution ofz = zi in equation (5) then yields,

yi+1 =
W0(zi) yi

1 +
(
W0(zi) − W0(zi)

)
yi

. (6)

Further, note thaty1 = 1. Starting the recursion withy1 = 1,
allows us to determineK = limi→∞ yi numerically.

Given the system contents at the end of a random cycle, we
can now easily retrieve the joint probability generating functions
of the numbers of customers in the primary and secondary queue
at other epochs. LetUd(z1, z2) denote the joint probability gen-
erating function of the number of customers in the primary and
secondary queue at the beginning of a slot following a departure,
then,

Ud(z1, z2) = E
[
z

Ud,1
1 z

Ud,2
2

]

=
1

U ′
c(1)

E

[
Uc∑

k=1

zUc−k
1 z

�k
i=1
�Si

j=1 Aij

2

]

= S(A(z2))
Uc(S(A(z2))) − Uc(z1)
U ′

c(1) (S(A(z2)) − z1)
,

(7)

whereUd,1 andUd,2 denote the number of customers in the pri-
mary and secondary queue at a random departure epoch respec-
tively and whereUc denotes the number of customers in the sys-
tem at the end of a random cycle.

Let Us(z1, z2) denote the joint probability generating func-
tion of the number of customers in primary and secondary queue
at the beginning of a slot where a customer starts service, then,
one easily verifies,

Us(z1, z2) =
z1

S(A(z2))
Ud(z1, z2), (8)

as the customers arriving during this customer’s service are
stored in the secondary queue and as the customer itself leaves
the primary queue after being served.

The joint probability generating function of these quantities
at the beginning of random busy slotsUb(z1, z2), is then given
by,

Ub(z1, z2) =
1

S′(1)
E

[
S∑

k=1

z
Us,1
1 z

Us,2+
�k−1

i=1 Ai

2

]

= Us(z1, z2)
S(A(z2)) − 1

S′(1) (A(z2) − 1)
,

(9)

whereUs,1 andUs,2 denote the number of customers in primary
and secondary queue at the beginning of a slot where a random
customer starts service and whereAi denotes the number of ar-
rivals in the system during thei-th slot of this customer’s service
timeS.

Let U(z1, z2) denote the joint probability generating function
of primary and secondary queue contents at random slot bound-
aries, then, as the primary queue is empty during vacations,

U(z1, z2) =
U ′

c(1) S′(1)
C ′(1)

(Ub(z1, z2) − Uv(z2)) + Uv(z2)

(10)

whereUv(z2) denotes the probability generating function of the
number of customers in the secondary queue at the beginning of
a random vacation slot and whereC ′(1) denotes the mean cycle
length. The cycle lengthC equals the sum of the lengths of the
busy and vacation periods,

C =
Uc∑

j=1

Sj + V , (11)

where V denotes the vacation length. Some standardz-
transform manipulations then yield,

C(z) = Uc(S(z)) N0(z) + Uc(S(a0 z))(N0(z) − N0(z)),
(12)

whereC(z) denotes the probability generating function corre-
sponding to the cycle length and whereN0(z) andN0(z) denote
the probability generating functions of the length of the vacation
period given that there is at least a customer in the system be-
fore the start of the vacation period or given that this is not the
case respectively. Similarly as for the number of arrivals during
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a vacation period we get,N0(z) = V0(z), and,

N0(z) =
L−1∑
i=0

(Vi(z) − Vi(a0 z))
i−1∏
j=0

Vj(a0 z)

+
VL(z) − VL(a0 z)

1 − VL(a0 z)

L−1∏
j=0

Vj(a0 z).

(13)

The first derivative of equation (12) forz = 1 then yields an
explicit expression for the mean cycle length.

As the system under consideration is a single-server one with
an i.i.d. arrival process, system contents at departure epochs and
at random slot boundaries are related as follows [8],

Ud(z, z) =
A(z) − 1

A′(1) (z − 1)
U(z, z). (14)

Equations (10) – evaluated forz1 = z2 = z – and (14) then
allow determination ofUv(z),

Uv(z) =
C ′(1) A′(1)

C ′(1) − U ′
c(1)S′(1)

z − 1
A(z) − 1

Ud(z, z)

− U ′
c(1)S′(1)

C ′(1) − U ′
c(1)S′(1)

Ub(z, z).
(15)

Substitution of the former equation in equation (10) then yields
an expression for the joint probability generating function of
steady-state the number of customers before and after the gate
at random slot boundaries.

IV. CUSTOMER DELAY

Customer delay is defined as the number of slots between the
end of the slot a customer arrives in a queue and the end of the
slot where that customer leaves the queue. As the customer only
leaves the primary queue after being served, the delay in the
primary queue includes the customer’s service time.

As in [9], we first consider an alternative system where
all arrivals in a slot are grouped to form a “batch-customer”,
i.e., we consider a system with Bernoulli “batch-customer” ar-
rivals. Probability generating functions of the number of batch-
customer arrivals per slotA∗(z) and their service timesS∗(z)
are then given by,

A∗(z) = a0 + (1 − a0) z,

S∗(z) =
A(S(z)) − a0

1 − a0
.

(16)

Let U∗
d (z1, z2) denote the probability generating function of

the primary and secondary system contents at departure epochs
for this alternative system. I.e., the latter is given by equation
(7) given the arrival and service probability generating func-
tions of (16). Now, consider a random batch-customer and let
D∗(z1, z2) denote the joint probability generating function of its
delay in primary and secondary queue. All batch-customers that
arrive during its delay in the secondary queue are moved to the
primary queue along with the batch-customer under considera-
tion, i.e., when the gate opens. Furthermore, all batch-customers
that arrive during its delay in the primary queue are present in
the secondary queue at its departure. As a result the probability

generating functions of batch-customer delay and queue con-
tents at batch-customer departure epochs, are easily related,

D∗(A∗(z2), A∗(z1)) = U∗
d (z1, z2). (17)

We can now relate the delay of a customer to the delay of
its batch. Clearly, delay in the secondary queue of a customer
equals the delay of its batch as they enter and leave this queue
at the same time. Let waiting time of a customer denote the
number of slots between the end of its arrival slot and the begin-
ning of the slot where this customer starts service. Waiting time
in the primary queue of a customer then equals the sum of the
waiting time of its batch, and the service times of all customers
that arrived during the same slot as, but prior to the customer.
Finally customer delay in the primary queue equals its waiting
time augmented by its service time. Keeping these observations
in mind, one gets,

D(z1, z2) =
S(z1) (A(S(z1)) − 1)

A′(1) (S(z1) − 1)

U∗
d

(
z2−a0
1−a0

, z1−a0
1−a0

)
S∗(z1)

. (18)

Taking the appropriate derivatives of (18) and (10), one easily
confirms the discrete-time equivalent of Little’s result [10], [11]
for both the primary and secondary queue and for the complete
system.

V. SPECIAL CASES

As noted in the introduction, the model under consideration
allows to capture performance of more specific models, a.o.,
the gated single- and multiple-vacation systems as well as the
limited-multiple gated vacation system.

Upon returning from a vacation, the single-vacation system
does not take a new vacation but waits for the following cus-
tomer to arrive. SubstitutingL = 1 andV1(z) = z in our anal-
ysis –V0(z) denotes the probability generating function of the
single vacation – easily gives the result for this system. Note
that in this case, we consider the idle-period (the system waits
for the first arrival batch following a vacation) as a part of the
vacation-period.

The system with multiple vacations keeps on taking vacations
(which are mutually independent) until there is at least one cus-
tomer in the system upon returning from a vacation. Putting
L = 0 (V0(z) denotes the probability generating function of
all vacations) in our analysis, we get the results for the multiple-
vacation system. One can show that in the case of multiple vaca-
tions, expressions for the moments of queue contents at various
epochs and for the moments of the customer delay are indepen-
dent ofK, implying that one does not need numerical determi-
nation ofK.

In the system with limited-multiple vacations, the server
keeps on taking vacations when there are no customers in the
system upon returning from a vacation and as long as a max-
imal numberM of vacations is not reached. After this maxi-
mum number of vacations, the server waits for the first arrival,
similarly as the single vacation system. We getL = M , and
VM (z) = z whereasVi(z) = V0(z) for 0 ≤ i < M , i.e.,V0(z)
is the probability generating function of the firstM vacation pe-
riods. Clearly, the single-vacation policy corresponds toM = 1,
whereas the multiple-vacation policy corresponds toM = ∞.
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Fig. 1. Mean total system contentsµ vs. vacation limitM

VI. N UMERICAL EXAMPLE

In some numerical examples, we show gated vacation sys-
tems with single, multiple and limited multiple vacations and
compare them. We assume that the number of arrivals during
the consecutive slots are a series of Poisson-distributed random
variable whereas the service times of the consecutive customers
are assumed to be a series of geometrically distributed random
variables, i.e.,

A(z) = eλ (z−1),

S(z) =
z

θ + (1 − θ) z
,

(19)

whereλ denotes the mean number of arrivals per slot, and where
θ denotes the mean service time of a customer. We further as-
sume deterministic vacation lengths ofl slots,

V0(z) = zl, (20)

and an upper limitM for the maximal number of vacations in
case of the limited vacation policy.

Figure 1 depicts the mean total system contents – the number
of customers in both queues – versus the maximal number of
vacationsM . Clearly,M = 1 corresponds to the single vacation
system whereasM = ∞ corresponds to the multiple-vacation
system. For all curves the arrival rateλ equals0.1 whereas the
mean customer service timeθ equals5 slots. The length of the
vacation periodsl varies from curve to curve as depicted. For all
l, mean queue contents quickly converges for increasingM to
the multiple-vacation value implying that performance gain by
limiting the maximal number of vacations is small.

Figure 2 depicts the correlation between the number of cus-
tomers in primary and secondary queue versus the arrival rate
λ. The mean customer service timeθ equals5 slots whereas the
vacation lengths vary for the different curves as depicted. We
consider both the multiple-vacation as the single-vacation sys-
tem. For more heavily loaded systems, correlation is negative,
i.e., one can expect small secondary queue sizes if the primary
queue is heavily loaded and vice versa. This is expected as for
the system under consideration, the secondary queue size in-
creases while the primary queue size decreases and vice versa.
For smaller loads, and in particular for shorter vacation lengths,
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correlation is small and positive as both queues remain empty
for longer periods.

Figure 3 depicts the mean customer delay in primary (µD1)
and secondary (µD2) queue for the single- and multiple-vacation
system. The mean customer service timeθ equals5 slots
whereas the vacation length equals50 slots. Consider in par-
ticular the mean secondary queue length for the single-vacation
system. Clearly, for low load, the probability that a customer
arrives during an idle period (the system waits for the first ar-
rival after a vacation) increases. For such a customer, secondary
delay equals0 (since the gate opens at the end of its arrival slot)
which explains the strong decrease of the secondary delay for
decreasingλ. For low loads in the multiple-vacation system, the
server is most probably on vacation, and therefore mean delay
converges to(l−1)/2 for λ → 0, i.e., the mean waiting time un-
til the end of a vacation. For increasing load, the probability to
find the system empty at the end of a vacation decreases, and as
a consequence, curves for multiple-vacation and single-vacation
systems converge.

VII. C ONCLUSIONS

We considered the gated vacation system in discrete-time. We
analyzed the joint system-contents and joint customer-delay in
both queues of the system. The flexibility of the vacation pro-
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cess under consideration allowed to model a.o., the single- and
multiple- vacation gated queueing systems as well as the gated
limited multiple-vacation system.
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