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Abstract—We consider the discrete-time gated multiple-vacation queue.  the system. Both primary and secondary queues have an infinite
Vacations are modeled asindependent random variableswith distributions capacity.

ﬁ?gﬁ”aﬁ;ﬂ?y‘;”eﬁ,’;f;;‘n“;?mﬁ;22;)”;gﬁﬁ‘f‘vgf‘;gﬁfg,;”faygfg'ggibfjgg; A vacation starts when the primary queue empties, (i.e., since
measures such as moments of queue contents and customer delay in equi-  the end of the last vacation) and the gate opens at the end of
librium. These measures are functions of a constant valuewhich weobtain  each vacation. If there are no customers present in the primary
numerically. queue upon returning from a vacation, the server immediately

takes another vacation. This continues until the primary queue

I. INTRODUCTION is no longer empty, i.e., we consider a multiple-vacation policy.

Vacation models [1], [2] have proven to be a useful abstrac- 1 he consecuj[ive vqcation lengths (in slots) are modpled by
tion of server unavailability in cases where classes of custom8}§2ns of a series of independent random variables with prob-
contend for a single resource such as polling systems [3] and Gfility mass functions;(n) (n > 0) and corresponding prob-
ority systems [4], or in cases where this resource is unreliabf®ility generating functions’;(z) depending oni, the number
e.g., maintenance models [5] and ARQ-systems [6]. qf _|mmed|ately preceding vacations. We assume there exists a

The current contribution investigates the gated multipl€nite upperbound. such thatVy (z) = Vi(z) forall k.1 > L.
vacation queue in discrete time. Our generalized multiple-
vacation queueing model allows to capture performance of
a.0., the multiple-vacation, the single-vacation and the limited The system under consideration alternates between busy-
multiple-vacation gated queueing systems. The model undisriods — the system serves a customer — and vacation-periods
consideration extends the results from [7] both regarding arrivaithe system takes (possibly multiple) vacations. A cycle is
and vacation process and regarding the performance meas@gfthed as a busy period followed by a vacation period. Dur-
under consideration. ing a busy period, all customers in the primary queue are being

The outline is as follows. In the next section we descriterved, while the secondary queue is filling with the newly arriv-
the queueing system under consideration in more detail. TRE customers. At the end of the busy period, the server enters
analysis is then presented in sections 3 and 4, whereas séhfevacation period and at the end of the latter, all customers
special cases are considered in section 5. Numerical examgfled’€ secondary queue are transferred to the primary queue.

illustrate our results in section 6 and conclusions are drawnGearly; the number of customers present in the system — i.e.,
section 7. in the primary and secondary queue —immediately after a cycle,

equals the number of customers that arrived during this cycle as
Il. MODEL a vacation is only taken when all customers that arrived before
. o . ) . he start of the cycle, are served.
We assume that time is divided into fixed length mtervafs Let ¢, denote the slot following thé-th cycle and let; de-

(slots) a_nd that SEVICe 1S synchronized with respect to sielie the number of customers in the primary queue at the begin-
boundaries, i.e., service of a customer cannot start during t |ﬁg of sloti, then, one easily establishes

customer’s arrival slot. Both the number of customers arriv-

I1l. QUEUE CONTENTS

ing in the consecutive slots and the service times (in slots) of Ue, S
these consecutive customers constitute series of i.i.d. random , = ZZ Aij + Wi, (1)
variables with common probability mass functians (n > 0) i=1 j—=1

ands,, (n > 0) respectively and with corresponding probability . ]
generating functionsl(z) andS(z) respectively. where S; denotes the service time of thah customer served

There are 2 queues, separated by a gate. Arriving custon%lﬂgng thek.—th cycle_, whered,; dgnotes the number of arrivals
first wait in the queue before the gate and move in batch to &N the;-th service slot of this customer and whéig...,
queue after the gate whenever the latter opens. This happe epotes the number of arrivals during the vacation period in the
the end of the last slot of a vacation period (see further). We .+ 1)-th cycle. Note that there. are no customers present in
fer to the queues before and after the gate as the secondary8figecondary queue at the beginning of a cycle. (Lg(2)
the primary queue respectively, i.e., customers arrive in the sggnote Fhe probability generating function of the number of cus-
ondary queue, move to the primary queue when the gate opBHBers in the system at the end of th¢h cycle, some standard
and are then served — in order of arrival (FIFO) — before leavirgansform manipulations then yield,
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whereW,(z) andW(z) denote the probability generating funcwherel, ; andU, » denote the number of customers in the pri-
tions corresponding to the number of arrivals during the vacatiorary and secondary queue at a random departure epoch respec-
period of the(k + 1)-th cycle given that there are no customersvely and wherd/, denotes the number of customers in the sys-

or given that there is at least one customer in the system at thm at the end of a random cycle.

end of the slot preceding the vacation period respectively. Let Us(z1, 22) denote the joint probability generating func-

As the presence of customers before the start of the vatian of the number of customers in primary and secondary queue
tion period implies the presence of customers at the end aifthe beginning of a slot where a customer starts service, then,
the first vacation, the server takes only a single vacation, i.ene easily verifies,

Wo(z) = Vo(A(z)). If there are no customers in the system,

the server keeps on taking vacations until there is at least qfg ;,  -,) = “1 Ua(21, 22), (8)
arrival. Conditioning on the number of necessary vacations then S(A(z2))
ields, . . . .

y as the customers arriving during this customer’s service are

L-1 izl stored in the secondary queue and as the customer itself leaves
Wo(z) = ) (Vi(A(z2)) = Vi(ao)) | | Vilao) the primary queue after being served.

=0 3=0 3) The joint probability generating function of these quantities

Vi(A(2)) — Vi (ao) L—1 V(o) at the beginning of random busy sldf§(z1, z2), is then given
1 —Vi(ao) R by,
7=0
s
Let U.(z) £ limy_.o U, (2) denote the probability gener-rr . -,y — L & ZZUSJZUS,ﬁE?;f Ai

ating function corresponding to the number of customers at the S'(1) 1 b ©)
end of a cycle in equilibrium. Similarly as in [7], one can prove S(A(z)) — 1
that the latter exists whenever, = Us(21, 22)

S'(1) (A(z2) — 1)’

p=S(1)A'(1) <1, o
whereU; ; andU;, , denote the number of customers in primary

wherep denotes the system load. Under the assumption of egaird secondary queue at the beginning of a slot where a random

librium, equation (2) yields, customer starts service and whetgdenotes the number of ar-

Un(2) = Ua(S(A())) Wa(2) + K (Wo(z) — Wo(2)), 5) :;\r;aelsslh the system during theth slot of this customer’s service

where K = U.(S(ag)) denotes the probability that the sec- LetU(z1, 22) denote the joint probability generating function

ondary queue is empty at the beginning of a vacation peridf primary and secondary queue contents at random slot bound-

The former functional equation allows implicit determination okries, then, as the primary queue is empty during vacations,

the various derivatives df.(z) evaluated inz = 1 onceK is

/! !/
determined. Ulz.20) = —Uc(l)S (1) Up(z1,22) — Uy(22)) + Uy(z
The unknownK can be determined numerically as follows. (21, 22) (1) Usan, 22) (2)) (=2)
Consider the series; = S(A(z;_1)), z0 = 0,7 > 0. Given (10)

p < 1, one easily proves that this series converges.td et '_ . .
Y = %Z) substitution of: = z; in equation (5) then yields, WhereU, (z2) denotes the probability generating function of the
o number of customers in the secondary queue at the beginning of
Wo(2:) v 5 arandom vacation slot and whaté(1) denotes the mean cycle
1+ (WO(%) _ WO(Zi)) i (6) length. The cycle length’ equals the sum of the lengths of the
busy and vacation periods,

Yi+1 =

Further, note that; = 1. Starting the recursion with; = 1,
allows us to determin& = lim;_. ., y; humerically. Ue
Given the system contents at the end of a random cycle, We= Z S;+V, (11)
can now easily retrieve the joint probability generating functions  j=1
of the numbers of customers in the primary and secondary queue )
at other epochs. Léf,(z1, z») denote the joint probability gen- Where V' denotes the vacation length. Some standard
erating function of the number of customers in the primary afggnsform manipulations then yield,
secondary queue at the beginning of a slot following a departure S S
then, C(z) = Ue(S(2)) No(2) + Uc(S(ag 2)) (No(2) — No(2)),
(12)
Ua(z1,22) = E [zl tzg® } 3 _ _
where(C'(z) denotes the probability generating function corre-
i Uk Zz;;l 5 A”} sponding to the cycle length and whe¥g(z) and Ny (z) denote
2

(7)  the probability generating functions of the length of the vacation

period given that there is at least a customer in the system be-
= S(A(2)) Ue(S(A(z2))) — Uc(zl)’ fore the start of the vacation period or given that this is not the
UL(1) (S(A(z2)) — 21) case respectively. Similarly as for the number of arrivals during
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a vacation period we gelVy(z) = Vy(2), and, generating functions of batch-customer delay and queue con-
tents at batch-customer departure epochs, are easily related,
L-1 i—1
No(2) = (Vi(2) = Vilao 2)) [ Vi(ao 2) D*(A*(23), A*(21)) = U} (21, 22). (17)
i=0 j=0
-1 (13) We can now relate the delay of a customer to the delay of

L
+ Vi(z) = Vilao2) H Vj(ag 2). its batch. Clearly, delay in the secondary queue of a customer
1= Vi(aoz) j=0 equals the delay of its batch as they enter and leave this queue
. o . ) at the same time. Let waiting time of a customer denote the
The first derivative of equation (12) for = 1 then yields an nymper of slots between the end of its arrival slot and the begin-
explicit expression for the mean cycle length. ning of the slot where this customer starts service. Waiting time
As the system under consideration is a single-server one withine primary queue of a customer then equals the sum of the
an i.i.d. arrival process, system contents at departure epochs gagling time of its batch, and the service times of all customers

at random slot boundaries are related as follows [8], that arrived during the same slot as, but prior to the customer.
A(z) —1 Finally customer delay in the primary queue equals its waiting
Ud(z,2z) = U DICE) U(z, 2). (14) time augmented by its service time. Keeping these observations
-

in mind, one gets,

Equations (10) — evaluated fef = 2, = 2z — and (14) then
allow determination ot/, (z),

Z2—0op 2Z1—0o

S(z1) (A(S(z1)) — 1) Va ( a0 1ao
A(1)(S(z1) = 1) S*(z1)

D(z1,22) = ) . (18)

C'(1) A'(1) 21

U(z) -~ C'(1) = UL(1)S'(1) A(z) —1 Ua(z ) Taking the appropriate derivatives of (18) and (10), one easily
U/(1)5'(1) (15) confirms the di_screte-time equivalent of Little’s result [10], [11]
- C'(1) - U(1)S'(1) Up(z, 2). for both the primary and secondary queue and for the complete
system.

Substitution of the former equation in equation (10) then yields

an expression for the joint probability generating function of V. SPECIAL CASES

steady-state the number of customers before and after the gat&s noted in the introduction, the model under consideration

at random slot boundaries. allows to capture performance of more specific models, a.o.,

the gated single- and multiple-vacation systems as well as the
limited-multiple gated vacation system.

Customer delay is defined as the number of slots between thé&Jpon returning from a vacation, the single-vacation system
end of the slot a customer arrives in a queue and the end of tees not take a new vacation but waits for the following cus-
slot where that customer leaves the queue. As the customer dniyer to arrive. Substituting = 1 andV;(z) = z in our anal-
leaves the primary queue after being served, the delay in ¥sis —V;(z) denotes the probability generating function of the
primary queue includes the customer’s service time. single vacation — easily gives the result for this system. Note

As in [9], we first consider an alternative system wherat in this case, we consider the idle-period (the system waits
all arrivals in a slot are grouped to form a “batch-customerfor the first arrival batch following a vacation) as a part of the
i.e., we consider a system with Bernoulli “batch-customer” avacation-period.
rivals. Probability generating functions of the number of batch- The system with multiple vacations keeps on taking vacations
customer arrivals per slot*(z) and their service time§*(z) (which are mutually independent) until there is at least one cus-

IV. CUSTOMER DELAY

are then given by, tomer in the system upon returning from a vacation. Putting
L = 0 (Vu(z) denotes the probability generating function of
A*(z) = ao + (1 —ag) 2, all vacations) in our analysis, we get the results for the multiple-
oy A(S(2) —ao (16) \{acation syste.m. One can show that in the case of multiple vaca-
S*(2) = T 1-a tions, expressions for the moments of queue contents at various

epochs and for the moments of the customer delay are indepen-
Let Uj(z1,22) denote the probability generating function oflent of K, implying that one does not need numerical determi-
the primary and secondary system contents at departure epatton of K.
for this alternative system. l.e., the latter is given by equationIn the system with limited-multiple vacations, the server
(7) given the arrival and service probability generating funé&eeps on taking vacations when there are no customers in the
tions of (16). Now, consider a random batch-customer and Btstem upon returning from a vacation and as long as a max-
D*(z1, z2) denote the joint probability generating function of itSmal number}M of vacations is not reached. After this maxi-
delay in primary and secondary queue. All batch-customers tinaim number of vacations, the server waits for the first arrival,
arrive during its delay in the secondary queue are moved to gimilarly as the single vacation system. We dget= M, and
primary queue along with the batch-customer under considelas (=) = z whereas/;(z) = Vy(z) for 0 < i < M, i.e.,Vy(2)
tion, i.e., when the gate opens. Furthermore, all batch-customisrthe probability generating function of the fifst vacation pe-
that arrive during its delay in the primary queue are presentrinds. Clearly, the single-vacation policy correspondafe- 1,
the secondary queue at its departure. As a result the probabilityereas the multiple-vacation policy correspondafte= co.
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VI. NUMERICAL EXAMPLE multie

45 4

In some numerical examples, we show gated vacation sys-
tems with single, multiple and limited multiple vacations and “ "
compare them. We assume that the number of arrivals durings 1
the consecutive slots are a series of Poisson-distributed randorg | 4
variable whereas the service times of the consecutive customers | "
are assumed to be a series of geometrically distributed random [
variables, i.e., 20 1

15

A(Z) — e)\ (zfl)’

p | «,,,«,,,.,,,,,,_,_ |
S(Z) = ;, ( ) n/“ﬁw/ﬁﬂ/u"‘
+ ( — ) > ! 7
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0 denotes the mean service time of a customer. We further as- »

sume deterministic vacation lengthsidflots,

1
Vo(z) = =, (20) correlation is small and positive as both queues remain empty

and an upper limit\/ for the maximal number of vacations infor longer periods.
case of the limited vacation policy. Figure 3 depicts the mean customer delay in primany, §
Figure 1 depicts the mean total system contents — the numBBfl secondary(p,) queue for the single- and multiple-vacation
of customers in both queues — versus the maximal numberSystem. The mean customer service tithequals5 slots
vacations/. Clearly,M = 1 corresponds to the single vacatiovhereas the vacation length equatsslots. Consider in par-
system whereas/ = oo corresponds to the muItipIe-vacatiorFiCUlaf the mean secondary queue length for the single-vacation
system. For all curves the arrival rateequals).1 whereas the system. Clearly, for low load, the probability that a customer
mean customer service t|n@%qua|s5 slots. The |ength of the arrives during an idle pel’iOd (the SyStem waits for the first ar-
vacation periodévaries from curve to curve as depicted. For aflival after a vacation) increases. For such a customer, secondary
I, mean queue contents quickly converges for increasintp delay equal$ (since the gate opens at the end of its arrival slot)
the multiple-vacation value implying that performance gain byhich explains the strong decrease of the secondary delay for
limiting the maximal number of vacations is small. decreasing.. For low loads in the multiple-vacation system, the
Figure 2 depicts the correlation between the number of cigrver is most probably on vacation, and therefore mean delay
tomers in primary and secondary queue versus the arrival ré@verges t¢l —1)/2for A — 0, i.e., the mean waiting time un-
). The mean customer service t|mBqua|S5 slots whereas the til the end of a vacation. For ianeaSing |0a.d, the probablllty to
vacation lengths vary for the different curves as depicted. \{jgd the system empty at the end of a vacation decreases, and as
consider both the multiple-vacation as the single-vacation sysconsequence, curves for multiple-vacation and single-vacation
tem. For more heavily loaded systems, correlation is negati®/Steéms converge.
i.e., one can expect small secondary queue sizes if the primary
gueue is heavily loaded and vice versa. This is expected as for
the system under consideration, the secondary queue size inAle considered the gated vacation system in discrete-time. We
creases while the primary queue size decreases and vice vaasalyzed the joint system-contents and joint customer-delay in
For smaller loads, and in particular for shorter vacation lengthmth queues of the system. The flexibility of the vacation pro-

Fig. 3. Mean customer delay vs. arrival rate

VII. CONCLUSIONS
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cess under consideration allowed to model a.o., the single- and
multiple- vacation gated queueing systems as well as the gated
limited multiple-vacation system.
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