
Neurocomputation of the Hurst Parameter

Danielo G. Gomes*, Nelson L. S. da Fonseca &, Nazim Agoulmine*, and José N. de Souza#1

* Laboratory of Complex Systems – LSC, University of Evry, France
&Institute of Computing, State University of Campinas, Brazil

#Department of Electrical Engineering, University of Ceará, Brazil

1 Danielo G. Gomes and Nazim Agoulmine are with the Laboratory of Complex Systems – LSC, University of Evry, 40, Rue du

Pelvoux – CE 1455 Courcouronnes 91020 Evry Cedex, France, e-mail: {dgomes,nazim}@iup.univ-evry.fr, Nelson L. S. da Fonseca is
with the Institute of Computing, State University of Campinas (UNICAMP), P.O. Box 6176 13084-971 Campinas, SP, Brazil, e-mail:
nfonseca@ic.unicamp.br José N. de Souza is with the Department of electrical Engineering, University of Ceará – UFC, Campus do Pici
– Bloco 705, 60455-760, Fortaleza, CE, Brazi, e-mail: neuman@ufc.br

Abstract- Network traffic presents long range dependences and is
usually modeled either by fractal or by multifractal processes. The Hurst
parameter is a measure of the self-similarity of a process. In this paper, a
neuro estimator of the Hurst parameter is proposed and compared to
statistical estimators

I. INTRODUCTION
Several studies have claimed that different types of network

can be accurately modeled using a self-similar process. A
self-similar process is able to capture the long-range
dependence (LRD) phenomenon exhibited by such traffic.
Moreover, studies have demonstrated that the long range
dependencies may have a pervasive effect on queuing
performance. In fact, there is clear evidence that it can
potentially cause massive cell losses. Furthermore, such a
queuing system suffers from the buffer inefficacy
phenomenon. Increasing the buffer size is not effective for
decreasing the buffer overflow probability significantly [1].

A self-similar process presents bursts in different time-
scales, i.e., when observing a self-similar process in different
time-scales it is verified a similar pattern of the process
samples [2]. The Hurst parameter or parameter H
characterizes the degree of self-similarity of a process
degree. This parameter assumes values between 0 and 0.1. H
> 0.5 indicates positive correlations, whereas H < 0.5
indicates a negative correlation. The closer to 1 the parameter
value is, the stronger is the impact on queuing. Moreover,
small variations of the value of H may imply in a significant
change on network resource utilization.

There are several statistical estimators for the Hurst
parameter [3]. Some of them (such as the R/S statistic) are
based on visual interpretation [3]. Others provide an
estimation of H with confidence intervals [4]. Ho wever, all

these estimators need a large number of samples for an
accurate analysis. On the other hand, in some cases, such as
on-line video transmission, it is not possible to previously
estimate the value of H. In this way, it is necessary to use
estimators that can calculate in real-time so that any change in
the Hurst parameter value can be immediately reported to the
network controller.

A neural network is a system composed by a high number
of simple processors (neurons or nodes), highly
interconnected and based on a simplified model of a neuron.
Neural networks can adapt the computation taking into
account previous knowledge of solutions for the problem
under investigation (training) [5] [6].

In this paper, a feedforward neural network with back
propagation training is introduced for the estimation of the
Hurst parameter of a traffic stream. The proposed approach is
validated by comparing estimations given by it against
estimations given by three statistical estimators: the R/S
statistical, the Higuchi estimator [7] and the Abry-Veitch
estimator [8] [9]. Results indicate that the neurocomputation
approach provides reasonably accurate results and is proper
for real time implementation.

The remainder of this paper is organized as follows. Section
II provides some notions of the Hurst parameter. The
statistical estimators are presented in Section III and the neuro
estimator in Section IV. Numerical results are shown in
Section V and the Section VI concludes the paper.

II. THE HURST PARAMETER

It has been shown that different type of traffic present
long-range dependencies, such as video, LAN and Internet
traffic. Video and LAN traffic can be modeled as self-similar

processes, whereas Internet traffic can be modeled by
multifractal processes. Multifractal processes can be
represented by a series of “local” self-similar processes.

Let x(t), with t = 0, 1, 2, ..., a stationary stochastic process
[2]. For each m = 1,2,..., let x(m)(k), k = 1,2,3,…, denote a new
series obtained by averaging the original series x(t) over non-
overlapping blocks of size m.

A process X is called exactly second-order self-similar with
parameter H = 1- β/2, 0< β < 1, if its autocorrelation
function is [2]:

and X is called asymptotically second-order self-similar with
parameter H = 1- β/2, 0< β < 1, if for all k=1,2,…,

() ()[]βββ −−−

∞→
−+−+= 222)(121

2
1

)(lim kkkkr m

m

 ≡)(ky (2)

In self-similar processes, the autocorrelations decay

hyperbolically implying in a non-summable autocorrelation
function ∞=Σ)(krk

 (long-range dependences),

The Hurst parameter (H) gives the degree of self-similarity
of a process, and, consequently, expresses the pattern of
dependencies of a process. If 0.5 < H < 1, the process is a
long-range Dependent (LRD) process. If 0 < H < 0.5 it is an
anti-persistence process, and if H = 0.5 it is a short-range
dependent (SRD) process

Figure 1 illustrates the auto -correlation decay for different
values of the Hurst parameter.

Fig. 1. Autocorrelation function (1) of an exact second-order
self-similar with parameter H = 1- β/2..

III. STATISTICAL ESTIMATORS
Three statistical estimators were used to validate results

given by the neuro estimator: the R/S statistical, the Higuchi
method and the Abry-Veitch estimator.

A. The R/S Statistical Estimator

The R/S estimator, defined by Hurst (1951), is one of the
most well-known and simplest methods for estimation of
dependence level of a series of samples [3].

For a stochastic process x(t) defined at discrete-time
intervals {xt, t = 0, 1, 2, ...}, the rescaled range of x(t) over a
time interval N is defined as the ratio R/S:

()() ()()

()()∑

∑∑

=

=≤≤=≤≤

−

−−

−

=
N

j
j

j

k
k

Nj

j

k
k

Nj

NMX
N

NjMXNjMX

S

R

1

2

1
1

1
1

1

minmax

with M(N) being the sample mean over the time period N:

() ∑
=

=
N

j

jX
N

NM
1

1

Let N be the sample size divided in K subsets where K is an
input parameter. If we plot log(R/S) versus N on a log-log
scale, then, the value of parameter H can be estimated by
linear regression over the K points obtained from the data
sets.

B. The Higuchi Estimator

This method [7] considers the fractal dimension D of a time
series such that H = 2+D. The method takes the partial sums

∑ == n
i iXnY 1)(of a random sample series {Xi},i = 1,…,N and

it calculates the normalized size of the curve defined by the
data as:

,
m

iN
miN

k

m

i

)m)(kY(ikm)Y(i
m

N
L(m) ∑∑

−

=

−

=

−+−+⋅
−

= ⋅

 −

)(

1

1

1

1
3
1

C. The Abry-Veitch Estimator

The Abry-Veitch estimator is based on wavelets theory. It
decomposes a sequence of samples in approach coefficients
(low-pass filter) and detail coefficients (high-pass filter).
These coefficients are obtained by projected digital filters.
From the original sample sequence, successive approaches
and detail sequences are calculated which are obtained by
recursive digital filtering. In other words, the output of a
digital filter is applied again (feedback) to the same digital
filter. A detailed explanation of this method can be found in
[8, 9]. The Abry-Veitch estimator is the most accurate H
estimator known up to date and presents low computational
complexity.

IV. A NEURAL NETWORK ESTIMATOR

A neural network target to the solution of a specific
problem requires training during which the network learns by
adjusting the weights of the network connections. In fact, the

() ()[]βββ −−− −+−+= 222)(121
2
1

)(kkkkr m ,...2,1,10),(=<< kkg β (1) ≡

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

g
(k

)

Autocorrelation

H=0.9
H=0.8
H=0.7

(4)

(3)

(5)

weights represent the knowledge of the neural network at the
end of the training process, i.e., learning is a process in which
the synaptic connections of the neural network are adapted by
a continuous stimulus process from the environment where
the network is inserted.

A feedforward network architecture with backpropagation
momentum training algorithm was used. The backpropagation
algorithm was considered since it is the most successful
algorithm for the design of multilayer feedforward networks.
The number of neurons in the input-output layers was defined
according to the structure of the problem. The output variable
is the parameter H, i.e., the neural network presents one
neuron on the output layer.

Fractal Brownian Motion samples [9] [10] were generated
to train the neural network and to generate the statistical
estimator inputs. The three statistical estimators described
before were used for the verification of the precision of the
neural network. Results were derived using the Stuttgart
Neural Network Simulator was used in the experiment [11].

Sequences of 10 traffic samples to compose the input
variables. The reasons for this choice are:

(i). patterns appear at different levels of aggregation (self-
similarity). Sequences of 10 samples have characteristics
similar to sequences of 100, 1000 or 10000 samples;

(ii). training time is short with little neurons.

There is no established procedure of choice for the

optimum number of neuron. Then, experiments with 2,5,10
15 and 20 neurons were tried and the better results were the
ones with 15 hidden neurons (Table 2).

The patterns were chosen in the following way:

• 200 traces sequences with H=0.5;
• 100 traces sequences with H=0.6;
• 100 traces sequences with H=0.7;
• 100 traces sequences with H=0.8;
• 100 traces sequences with H=0.9;

Each sequence has 10 bursts of samples. For the trace with
H=0.5, it was necessary to have twice the number of samples
due to short range dependences.

After the learning phase the performance of the neural
network was checked. These patterns should not have been
presented to the network before.

For the definition of the number of neurons and of the
activation function, the first training used a stopping criterion
of 1000 epochs. Each epochs contains one complete cycle
(sweeping) through all training pattern set This training
allows to selection of the neural network topology which is
more adapted to the problem. The second training considered
another stopping criterion: a small error.

After the training phase, 600 sequences of the test set were
applied to NN. These sequences are not known by the
network since it is necessary to verify the generalization
capacity of the neural network.

V. RESULTS AND DISCUSSION

Estimations of H and respective errors of the three
statistical methods are shown in Table 1.

TABLE I
STATISTICAL ESTIMATORS ERRORS

Table 2 presents different scenarios used in the

experiments. The difference of magnitude of the mean -square
error given by the hyperbolic tangent and the logistics
activation function is evident.

 TABLE 2
 MEAN-SQUARE ERROR OF THE INITIAL T RAINING

For both in logistic and hyperbolic tangent functions, the
worst and the best cases happened with 2 and 15 neurons,
respectively. Table 2 reveals that the neural network with a
hidden layer of 15 neurons and with hyperbolic tangent
activation function is the best option.

After choosing the neural network topology chosen (10

input neurons, 15 hidden neurons and 1 output neuron), the
real training was persued. The stopping criterion used for the
learning process was an error less than 0.0010 (0.1%). The
NN was trained with 2616 epochs (Fig. 2).

Six hundred 600 sequences of the test set were applied to

neural network in the execution phase. These sequences had
never been known by the network.

 The neural estimator error for different values of the
parameter H can be seen in the Fig. 3. Notice that the error
has an initial increase, from H=0.5 to H=0.6, and then
decreases. The three statistical estimators have used the
complete traces (10000 samples) to make their calculations.

Higuchi method R/S Statistical Abry-Veitch H
value

 Estimation Error Estimation Error Estimation Error

0.5 0.4859 0.0141 0.5437 -0.0437 0.5006 -0.0006
0.6 0.5652 0.0347 0.5780 0.0219 0.5916 0.0083
0.7 0.637 0.063 0.6749 0.0250 0.6911 0.0088
0.8 0.7056 0.0943 0.7672 0.0327 0.7987 0.0012
0.9 0.7827 0.1172 0.8542 0.0457 0.9181 -0.0181

Hidden layer activation function

Logistic Hyperbolic tangent

Hidden neurons
number

Mean-Square Error
(1000 epochs)

Mean -Square Error
(1000 epochs)

2 0.3371 0.2191
5 0.3219 0.1225
10 0.3190 0.0197
15 0.1355 0.0060
20 0.2008 0.0131

Fig. 2. Training error with the selected topology.

The neural network needed only one tenth of the total trace,
1000 samples, for each LRD trace (H = 0.6, H = 0.7, H = 0.8
and H = 0.9). When the input samples were doubled
duplicated for the SRD trace (H = 0.5), i.e., 2000 samples,
there was considerable improvement in the error (Fig. 3). In
other words, the neural networks enhanced the precision of
the estimations given that sample size increase needed by the
statistical estimators.

It can be seen in Figure 4 that for values of the Hurst
parameter close to 0.5 (SRD), the neural network estimator
produces the least accurate results. However, for the range of
interest for network traffic (H > 0.7), the neural network
estimator gives more precise results than the R/S and the
Higuchi estimators.

For the range of interest of the Hurst parameter, the neural
network produces values of H which differ at most 0.02 from
the results produced by the Abry-Veitch estimator which is
the most precise one. The difference between the results by
these two estimators decreases as H increases.

Moreover, the neural networks demanded half of the
number of the samples required by the statistical estimators,
i.e., the neural network estimator can generate quite accurate
results much faster than the statistical estimators which is
specially advantageous to quickly detect variations of the
Hurst parameter in real time. The drawback of the neural
networks is the delay in learning which impact, however,
decreases for large traces.

VI. CONCLUSION

Long-range dependences have a significant impact on both

network dimensioning and traffic management. The Hurst
parameter is a measure of self-similarity of a process, and,
thus, the intensity of the long-range dependences of a process.
Small variations in the Hurst parameter value may lead to
considerable changes on traffic control. Therefore, an
accurate and quick evaluation of the Hurst parameter is of
paramount importance. The statistical estimators requires
large sample size. Consequently, it presents limitations for
real time evaluation of H.

Fig. 3. Neural estimator evolution error.

Fig. 4 .Comparison between statisticals and neuro estimators.

TABLE 3
COMPARISON OF ESTIMATORS ERRORS

Higuchi R/S Abry-Veitch Neural
estimator H value

(traces)
Error Error Error Error

0.5 0.0141 -0.04378 -0.000662 0.0269
0.6 0.03479 0.02194 0.008396 0.0458
0.7 0.063 0.02503 0.008893 0.029
0.8 0.09435 0.03277 0.001278 0.02
0.9 0.11722 0.04571 -0.018102 0.0111

The present work investigated the effectiveness of a neural
network estimator for the Hurst parameter. Neural networks,
even demanding a significant time for training, represent an
accurate and fast estimation of the parameter H.

To our best knowledge, this is the first time that a Hurst
parameter estimation is pursued using neural networks.

0 500 1000 1500 2000 2500
0

0 .02

0 .04

0 .06

0 .08

0.1

0 .12

0 .14

0 .16

epoch number

m
e

a
n

-s
q

u
a

re
 e

rr
o

r

Training error

F ina l er ror : 0 .0010

REFERENCES

[1] K. Park and W. Willinger, Self Similar Network Traffic
and Performance Evaluation, Willey, 2000.

[2] W. Leland, M. Taqqu, W. Willinger and D. Wilson, On
the Self-Similar Nature of Ethernet Traffic (Extended
Version), IEEE/ACM Transaction on Networking,vol 2,
no 1, pp. 1-15, February 1994.

 [3] M.Taqqu, V. Teverovsky, and W. Willinger, Estimators
for Long-Range Dependence: an Empirical Study ,
Fractals, vol 3, No 4, pp. 785-788, 1995.

[4] M. Taqqu, and V. Teverovsky, Robustness of Whittle-
type Estimators for Time Series with Long-Range
Dependence. Stochastic Models 13 (1997) pp 723-757.
http://math.bu.edu/people/murad/articles.html

[5] R. Hect-Nielsen, neurocomputing, Addison-Wesley
Publishing Company, 1990.

[6] L. Fausset, Fundamentals of neural networks, Prentice-
Hall International, new jersey, 1994

[7] T. Higuchi, Approach to an irregular time series on the
basis of the fractal theory . Physica D, 31:277-283, 1988.

[8] P. Abry, and D. Veitch, Wavelet Analysis of Long-Range
Dependence Traffic. IEEE Transactions on Informations
Theory, vol. 44, No. 1, pp. 2-15, 1998.

[9] D.Veitch, and P. Abry, A Wavelet-Based Joint Estimator
of the Parameters of Long-Range Dependence. IEEE
Transactions on Informations, vol. 45, No. 3, pp. 878-
897, 1998.

 [9] M. Chi, E. Neal, and G. Young, Practical Applications of
Fractional Brownian Motion and Noise to Synthetic
Hydrology. Water Resources Research, 9:1523-1533,
December, 1973.

[10] B. Mandelbrot, and J.W. Ness, Fractional brownian
motions, fractional noises and applications. SIAM
Review, 10:422-437, October 1968.

[11] U. of Stuttgart, SNNS - Stuttgart Neural Network
Simulator - User Manual, Version 4.1, 1995.(http://www-
ra.informatik.uni-tuebingen.de/SNNS/ .).

