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Abstract- Network traffic presents long range dependences and is 
usually modeled either by fractal or by multifractal processes. The Hurst 
parameter is a measure of the self-similarity of a process. In this paper, a 
neuro estimator of the Hurst parameter is proposed and compared to 
statistical estimators  

 

I. INTRODUCTION 
Several studies have claimed that different types of network 

can be accurately modeled using a self-similar process. A 
self-similar process is able to capture the long-range 
dependence (LRD) phenomenon exhibited by such traffic. 
Moreover, studies have demonstrated that the long range 
dependencies may have a pervasive effect on queuing  
performance. In fact, there is clear evidence that it can 
potentially cause massive cell losses. Furthermore, such a 
queuing system suffers from the buffer inefficacy 
phenomenon. Increasing the buffer size is not effective for 
decreasing the buffer overflow probability significantly [1]. 

A self-similar process presents bursts in different time-
scales, i.e., when observing a self-similar process in different 
time-scales it is verified a similar pattern of the process 
samples [2]. The Hurst parameter or parameter H 
characterizes the degree of self-similarity of a  process 
degree. This parameter assumes values between 0 and 0.1. H 
> 0.5 indicates positive correlations, whereas  H < 0.5 
indicates a negative correlation. The closer to 1 the parameter 
value is, the stronger is the impact on queuing. Moreover, 
small variations of the value of H may imply in a significant 
change on network resource utilization.  

There are several statistical estimators for the Hurst 
parameter [3]. Some of them (such as the R/S statistic) are 
based on visual interpretation [3]. Others provide an 
estimation of H with confidence intervals [4]. Ho wever, all 

these estimators need a large number of samples for an 
accurate analysis. On the other hand, in some cases, such as 
on-line video transmission, it is not possible to previously 
estimate the value of H. In this way, it is necessary to use 
estimators that can calculate in real-time so that any change in 
the Hurst parameter value can  be immediately reported to the 
network controller. 

A neural network is a system composed by a high number 
of simple processors (neurons or nodes), highly 
interconnected and based on a simplified model of a neuron. 
Neural networks can adapt the computation taking into 
account previous knowledge of solutions for the problem 
under investigation  (training) [5] [6].  

In this paper, a feedforward neural network with back 
propagation training is introduced for the estimation of the 
Hurst parameter of a traffic stream. The proposed approach is 
validated by comparing  estimations given by it against 
estimations given by three statistical estimators: the R/S 
statistical, the Higuchi estimator [7] and the Abry-Veitch 
estimator [8] [9]. Results indicate that the neurocomputation 
approach provides reasonably accurate results and is proper 
for real time implementation. 

The remainder of this paper is organized as follows. Section 
II provides some notions of the Hurst parameter. The 
statistical estimators are presented in Section III and the neuro 
estimator in Section IV. Numerical results are shown in 
Section V and the Section VI concludes the paper.  

II. THE HURST PARAMETER 

It has been shown that different type of  traffic present 
long-range dependencies, such as video, LAN and Internet 
traffic. Video and LAN traffic can be modeled as self-similar 



processes, whereas Internet traffic can be modeled by 
multifractal processes. Multifractal processes can be  
represented by a series of “local” self-similar processes. 

Let x(t), with  t = 0, 1, 2, ..., a stationary stochastic process 
[2]. For each m = 1,2,..., let x(m)(k), k = 1,2,3,…, denote a new 
series obtained by averaging the original series x(t) over non-
overlapping blocks of size m. 

A process X is called exactly second-order self-similar with 
parameter H = 1- β/2,  0< β < 1, if its autocorrelation  
function is [2]: 

 
 
 
 

and  X is called asymptotically second-order self-similar with 
parameter  H = 1- β/2,  0< β < 1, if for all k=1,2,…, 
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In self-similar processes, the autocorrelations decay 

hyperbolically implying in a non-summable autocorrelation 
function ∞=Σ )(krk

 (long-range dependences), 

The Hurst parameter (H) gives the degree of self-similarity 
of a process, and, consequently, expresses the pattern of 
dependencies of a process.  If  0.5 < H < 1, the process is a 
long-range Dependent (LRD) process. If 0 < H < 0.5 it is an 
anti-persistence process, and if H = 0.5 it is a  short-range 
dependent (SRD) process 

Figure 1 illustrates the auto -correlation decay for different 
values of the Hurst parameter. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Autocorrelation function (1) of an exact second-order 
self-similar with parameter H = 1- β/2.. 

 
 

III. STATISTICAL ESTIMATORS 
Three statistical estimators were used to validate results 

given by the neuro estimator: the R/S statistical, the Higuchi 
method and the Abry-Veitch estimator.  

A. The R/S Statistical Estimator 

The R/S estimator, defined by Hurst (1951), is one of the 
most well-known and simplest methods for estimation of 
dependence level of a series of samples [3]. 

For a stochastic process x(t) defined at discrete-time 
intervals {xt, t = 0, 1, 2, ...}, the rescaled range of x(t) over a 
time interval N is defined as the ratio R/S: 
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with M(N) being the sample mean over the time period N: 
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Let N be the sample size divided in K subsets where K is an 
input parameter. If we plot log(R/S) versus N on a log-log 
scale, then, the value of parameter H can be estimated by 
linear regression over the K points obtained from the data 
sets. 

B. The Higuchi Estimator 

This method [7] considers the fractal dimension D of a time 
series such that H = 2+D.  The method takes the partial sums 

∑ == n
i iXnY 1)( of a random sample series {Xi},i = 1,…,N and 

it calculates the normalized size of the curve defined by the 
data as: 
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C. The Abry-Veitch Estimator 

The Abry-Veitch estimator is based on wavelets theory. It 
decomposes a sequence of samples in approach coefficients 
(low-pass filter) and detail coefficients (high-pass filter). 
These coefficients are obtained by projected digital filters. 
From the original sample sequence, successive approaches 
and detail sequences are calculated which are obtained by 
recursive digital filtering. In other words, the output of a 
digital filter is applied again (feedback) to the same digital 
filter. A detailed explanation of this method can be found in 
[8, 9]. The Abry-Veitch estimator is the most accurate H 
estimator known up to date and presents  low computational 
complexity. 

 

 

IV. A NEURAL NETWORK ESTIMATOR 
 

A neural network target to the solution of a specific 
problem requires training during which the network learns by 
adjusting the weights of the network connections. In fact, the 
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weights represent the knowledge of the neural network at the 
end of the training process, i.e., learning is a process in which 
the synaptic connections of the neural network are adapted by 
a continuous stimulus process from the environment where 
the network is inserted. 

A feedforward network architecture with backpropagation 
momentum training algorithm was used. The backpropagation 
algorithm was considered since it is the most successful 
algorithm for the design of multilayer feedforward networks. 
The number of neurons in the input-output layers was defined 
according to the structure of the problem. The output variable 
is the parameter H, i.e., the neural network presents one 
neuron on the output layer.  

Fractal Brownian Motion samples [9] [10] were generated 
to train the neural network and to generate the statistical 
estimator inputs. The three statistical estimators described 
before were used for the verification of the precision of the 
neural network. Results were derived using the Stuttgart 
Neural Network Simulator was used in the experiment [11]. 

Sequences of 10 traffic samples to compose the input 
variables. The reasons for this choice are: 

(i). patterns appear at different levels of aggregation (self-
similarity).  Sequences of 10 samples have  characteristics 
similar to sequences of 100, 1000 or 10000 samples;   

(ii). training time is short with little neurons. 
 
There is no established procedure of choice for the 

optimum number of neuron. Then, experiments with 2,5,10 
15 and 20 neurons were tried and  the better results were the 
ones with 15 hidden neurons (Table 2).  

The patterns were chosen in the following way:      
 
• 200 traces sequences with H=0.5;   
• 100 traces sequences with H=0.6;  
• 100 traces sequences with H=0.7;  
• 100 traces sequences with H=0.8;  
• 100 traces sequences with H=0.9;  

 

Each sequence has 10 bursts of samples. For the trace with 
H=0.5, it was necessary to have twice the number of samples 
due to short range dependences. 

After the learning phase the performance of the neural 
network was checked. These patterns should not have been 
presented to the network before.  

For the definition of the number of neurons and of the 
activation function, the first training used a stopping criterion 
of 1000 epochs. Each epochs contains one complete cycle 
(sweeping) through all training pattern set This training 
allows to selection of  the neural network topology which is 
more adapted to the problem. The second training considered 
another stopping criterion: a small error.  

After the training phase,  600 sequences of the test set  were 
applied to NN. These sequences are not known by the 
network since it is necessary to verify the generalization 
capacity of the neural network. 

 

V.    RESULTS AND DISCUSSION 
 

Estimations of H and respective errors of the three 
statistical methods are shown in Table 1. 

TABLE I 
STATISTICAL ESTIMATORS  ERRORS 

 

 
Table 2 presents different scenarios used in the 

experiments. The difference of magnitude of the mean -square 
error given by the hyperbolic tangent and the logistics 
activation function is evident.  
 

        TABLE 2 
                  MEAN-SQUARE  ERROR OF  THE INITIAL T RAINING 

 

For both in logistic and hyperbolic tangent functions, the 
worst and the best cases happened with 2 and 15 neurons, 
respectively. Table 2 reveals that the neural network with a 
hidden layer of 15 neurons and with hyperbolic tangent 
activation function is the best option. 

 
After choosing the neural network topology chosen (10 

input neurons, 15 hidden neurons and 1 output neuron), the 
real training was  persued. The stopping criterion used for the 
learning process was an error less than 0.0010 (0.1%). The 
NN was trained with 2616 epochs (Fig. 2). 

 
Six hundred 600 sequences of the test set were applied to 

neural network in the execution phase. These sequences had 
never been known by the network. 

 The neural estimator error for different values of the 
parameter H can be seen in the Fig. 3. Notice that the error 
has an initial increase, from H=0.5 to H=0.6, and then 
decreases. The three statistical estimators have used the 
complete traces (10000 samples) to make their calculations. 

 
 
 

Higuchi method R/S Statistical  Abry-Veitch H 
value 

 Estimation Error  Estimation Error Estimation Error 

0.5 0.4859 0.0141 0.5437 -0.0437 0.5006 -0.0006 
0.6 0.5652 0.0347 0.5780 0.0219 0.5916 0.0083 
0.7 0.637 0.063  0.6749 0.0250 0.6911 0.0088 
0.8 0.7056 0.0943 0.7672 0.0327 0.7987 0.0012 
0.9 0.7827 0.1172 0.8542 0.0457 0.9181 -0.0181 

 
Hidden layer activation function 

Logistic Hyperbolic tangent  

 
 

Hidden neurons 
number 

 
 

Mean-Square Error 
(1000 epochs)  

Mean -Square Error 
(1000 epochs)  

2 0.3371 0.2191 
5 0.3219 0.1225 
10 0.3190 0.0197 
15 0.1355 0.0060 
20 0.2008 0.0131 



 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Training error with the selected topology. 

 

The neural network needed only one tenth of the total trace, 
1000 samples, for each LRD trace (H = 0.6, H = 0.7, H = 0.8 
and H = 0.9). When the input samples were doubled 
duplicated for the SRD trace (H = 0.5), i.e., 2000 samples, 
there was  considerable improvement in the error (Fig. 3). In 
other words, the neural networks enhanced the precision of 
the estimations given that sample size increase needed by the 
statistical estimators. 

It can be seen in Figure 4 that for values of the Hurst 
parameter close to 0.5 (SRD), the neural network estimator 
produces the least accurate results. However, for the range of 
interest for network traffic (H > 0.7), the neural network 
estimator gives more precise results than the R/S and the 
Higuchi estimators. 

For the range of interest of the Hurst parameter, the neural 
network produces values of H which differ at most 0.02 from 
the results produced by the Abry-Veitch estimator which is 
the most precise one.  The difference between the results by 
these two estimators decreases as H increases. 

Moreover, the neural networks demanded half of the 
number of the samples required by the statistical estimators, 
i.e., the neural network estimator can generate quite accurate 
results much faster than the statistical estimators which is 
specially advantageous to quickly detect variations of the 
Hurst parameter in real time. The drawback of the neural 
networks is the delay in learning which impact, however, 
decreases for large traces. 

 
VI. CONCLUSION 

 
Long-range dependences have a significant impact on both 

network dimensioning and traffic management. The Hurst 
parameter is a measure of self-similarity of a process, and, 
thus, the intensity of the long-range dependences of a process. 
Small variations in the Hurst parameter value may lead to 
considerable changes on traffic control. Therefore, an 
accurate and quick evaluation of the Hurst parameter is of 
paramount importance. The statistical estimators requires 
large sample size. Consequently, it presents limitations for 
real time evaluation of H.  

 

 
 

Fig. 3. Neural estimator evolution error. 
 
 

 
 
Fig. 4 .Comparison between statisticals and neuro estimators. 

 
 

TABLE 3 
COMPARISON OF ESTIMATORS ERRORS 

 

Higuchi  R/S Abry-Veitch Neural 
estimator H value 

(traces) 
Error  Error  Error Error 

0.5 0.0141 -0.04378 -0.000662 0.0269 
0.6 0.03479 0.02194 0.008396 0.0458 
0.7 0.063 0.02503 0.008893 0.029 
0.8 0.09435 0.03277 0.001278 0.02 
0.9 0.11722 0.04571 -0.018102 0.0111 

 
 

The present work investigated the effectiveness of a neural 
network estimator for the Hurst parameter. Neural networks, 
even demanding a significant time for training, represent an 
accurate and fast estimation of the parameter H. 

To our best knowledge, this is the first time that a Hurst 
parameter estimation is pursued using neural networks.  
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