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Abstract—The stochastic properties of the binary channel that describe
the successes and the failures of the transmission of a modulated signal over
a time correlated flat fading channel is considered for investigation. This
analysis is employed to develop�-th order Markov models for such a burst
channel. The order of the Markov model that generates accurate analytical
models is estimated for a broad range of fading environments. The parame-
terization and the accuracy of an important class of hidden Markov models
known as the Gilbert-Elliott channel are also investigated. Fading rates are
identified in which the �-th order and the Gilbert-Elliott channel model
approximate the fading channel with similar accuracy. The latter model
is useful for approximating slowly fading processes, since it provides a far
more compact parameterization.

I. I NTRODUCTION

In a typical mobile communication channel the transmitted
signal undergoes attenuation and distortion caused by multi-
path propagation and shadowing. The non-frequency selective
(flat) fading channel imposes multiplicative narrow-band com-
plex Gaussian noise (referred to asfading process) on the trans-
mitted signal. As a consequence, abrupt changes in the mean
received signal level may occur, and the autocorrelation func-
tion of the fading process may lead to the occurrence of a burst
of bit errors. The analytical analysis of a communication system
operating over such a correlated fading process is difficult and
there are no analytical expressions for several statistics relevant
to system performance evaluation.

Finite state channel (FSC) models have been widely accepted
as an effective approach to characterize the correlation structure
of the fading process [1]-[11]. An FSC is described by a deter-
ministic or probabilistic function of a first-order Markov chain,
where each state may be associated with a particular channel
quality. The strategy adopted by many researchers to design
FSC models for fading channels consists in representing each
state of a first-order Markov chain by a non-overlapping interval
of the received instantaneous signal to noise ratio [2]-[7]. Crite-
ria to partitioning the signal to noise ratio are discussed in [2],
[5], [7]. The modulation and demodulation schemes are incor-
porated into the model through the crossover probability of the
binary symmetric channel associated to each fading state. An
information theoretic metric was proposed in [3] to validate the
first-order model. The limitations of this criterion and the appli-
cability of the first-order assumption have been discussed in [7].
Other model structures have also been proposed to represent the
quantized signal to noise ratio, including, higher-order Markov
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models [8], general Hidden Markov models [11], and Gilbert-
Elliott channels [10].

This paper concerns the development of FSC models for a dis-
crete communication system composed by a modulator, a time
correlated flat fading channel, and a hard quantized demodula-
tor. The FSC model describes the successes and the failures of
the symbol transmitted over a fading channel, which is repre-
sented mathematically as a binary error sequence. We consider
two classes of FSC models commonly used to characterize fad-
ing channels: The�th-order Markov model and the Gilbert-
Elliott channel (GEC) model. We first describe a methodology
to estimate the parameters of these models directly from the bi-
nary error sequence. A method recently proposed in [7] to judge
model accuracy is applied to identify the order of the Markov
model that satisfactorily approximates the channel, for several
fading regimes. A similar study evaluates the accuracy of the
GEC model. The results presented here allow us to study coding
performance on correlated fading channels using the analytical
techniques developed to analyze burst channels represented as
specific FSC models [10]-[15].

II. T HE CHANNEL MODEL

We consider a communication system that employs� -ary
FSK modulation, a time correlated flat Rician fading chan-
nel and non-coherent demodulation. The complex envelope
of the received signal at the input to the demodulator is cor-
rupted by a multiplicative Rician fading and by an additive
white Gaussian noise with zero mean and autocorrelation func-
tion �

�E� ���� � �� ������� � ��Æ���. The complex envelope
of the fading process,����� � ��� ��� � � ������, is a complex,
wide-sense stationary, Gaussian process with real constant mean
�, where� �

���, and the quadrature components������
and ������ are mutually independent Gaussian process with the
same covariance function, named	���. Although the analysis
carried out here can be applied to a fading process with arbitrary
covariance function, we adopted the Clarke’s model [16], [17]
for 	���:

	��� �
�

�
E�� ����� �� ��	 � ��������	� � 
�� �����
����

where����� is the zero-order Bessel function of the first kind,

� is the maximum Doppler frequency, and
 �

� is the variance

of �����. For a fixed time instant, the fading envelope��
�
�
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���� � (where� is the symbol interval) has the

Rician probability density function given by:
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where����� is the zero-order modified Bessel function of the
first kind. When the in-phase process is zero-mean (�� � 
),
the fading envelope follows the Rayleigh probability density
function:
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At each signaling interval of length� , the demodulator forms
the� decision variables and decides which signal was more
likely to have been transmitted. We define a binary error pro-
cess��������, where�� � 
 indicates no symbol error at
the �th interval, and�� � � indicates a symbol error. It can
be shown that the probability of an error sequence of length�,
�
 � ���� � � � �
, may be expressed as [9]:
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where�
�

is the complex conjugate of the normalized� �
� covariance matrix of ����� (the ��� ��th entry of �

�
is

�����
��� � ��� �, � is a diagonal matrix defined as� �
diag� ��

����
� � � � � ��

����
�, �� is the energy of the transmitted sym-

bol,�� � ����
�� is the Rician factor,� is a column vector of
ones, and the superscript��	� indicates the transpose of a matrix.
We will call this discrete fading model from the modulator in-
put to the demodulator output the discrete channel with Clarke’s
autocorrelation (DCCA) model. Hereafter, we consider binary
modulation (� � �), so the DCCA model has three parameters
��, 
�� , and�����.

Equation (3) can be used to calculate the probability of any
error event relevant to the analysis of the DCCA fading model.
For example, the probability the error bit is a 1 is:
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and the probability of two consecutive ones (errors) is:
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where� is the correlation coefficient of two consecutive samples
of the fading process�����:

� � �����
�� �� (6)

Equation (3) will be employed to parameterize an FSC model
that accurately reflects the statistical description of the real error
process. A brief description of FSC models is given next.

Consider� ������ an� -state, first-order Markov chain with
a finite state space�� � �
� �� � � � � � � ��. Let � be an
� �� transition probability matrix, whose��� ���� entry is the
transition probability���� � � � � � � �  ��� � ��, �� � 	
�� . The FSC model generates an error symbol according to
the following probabilistic mechanism. At the� �� time interval,
the chain makes a transition from state ��� � � to � � � with
probability ���� and generates an output (error) symbol�� 	
�� (independent of�), with probability!���� � � ��� � �� �
 � � ��. Conditioned to the state process, the error process is
memoryless, that is,� ��
 � �
� �

�

��� � ��� � "��. We are

assuming that the distribution of the initial state is the stationary
distribution � � ���� ��� � � � � ����	

� .
The probability of an error sequence generated by the FSC

model, conditioned to the initial state, is:
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Equation (7) can be rewritten in a matrix form. Define two� �
� matrices,��
� and����, where� � ��
� � ����. The
��� ���# entry of the matrix�����, �� 	 �
� ��, is � ��� �
���  � � � �  ��� � �� � !���� ���� , which is the probability
that the output symbol is�� when the chain makes a transition
from state� to �. Equation (7) has a matrix form given by:

� ��
� � �
�
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�
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An FSC model is completely specified by the matrices��
� and
����. We define in the next section some properties of FSC
models and discuss the evaluation of its parameters.

III. PARAMETERIZATION OF SPECIFIC FSC MODELS

We consider two classes of FSC models:�th-order Markov
models and the GEC model. Following the ideas introduced
in [9], the parameters of each FSC model will be expressed as
functions of the probabilities of binary sequences generated by
the model. Then, we apply (3) to estimate these probabilities
and to parameterize FSC models that approximates the DCCA
correlated fading model.

A. �th-order Markov Models

A discrete stochastic process��
��
�� is a Markov process
of �th-order if it obeys the relation:

� ��
 � ���� � � � �
��� � � ��
 � �
�� � � � �
���� (9)
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A first-order binary Markov model is an FSC model with space
state�
� ��. An error symbol is produced when the chain tran-
sitions to state 1. Otherwise, if the chain transition is to state
0, a correct symbol is produced. Therefore,!��� � � and
!��� � �. Using (7) for error sequences of length 1 and 2, we
get,���� � � ������ ���, �� � 	 �
� ��. The stationary vector is
� � �� �
� � ���	� , and the matrices��
� and���� for the
first-order Markov model are:
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In general, the�th-order Markov model can be represented as
a function of a first-order Markov chain [18]. Each state of
the�th-order model is represented by a binary string of length
�. Given two states$ � $�$� � � �$� and% � %�%� � � � %� ,
we say that$ and % overlap progressively if $�$� � � �$� �
%�%� � � � %���. If $ and% overlap progressively, then, there is a
transition from$ to % with probability� �$�%�%� � � � %���� �$�.
Otherwise, the state transition probability is zero. Given a state
% � %�%� � � � %� , !���� � %� . For example, the matrices��
�,
���� and � for the second-order Markov model are:
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Clearly, the number of states grows exponentially with the order
�.

B. Gilbert-Elliott Channel

The GEC is a two-state FSC model composed of state 0,

which produces errors with small probability,!���
�
� &, and

state 1, where errors occur with higher probability,!���
�
� !,

where& '' !. The transition probabilities of the Markov chain

are����
�
� ( and����

�
� ). The matrices��
�, ����, where

��
� ����� � �, for the GEC model are given by:

P(0) �

�
���(� ��� &� ( ��� !�

) ��� &� ��� )� ��� !�

�
� (10)

P(1) �

�
���(� & ( !

) & ��� )� !

�
� (11)

We define next the notation required in this subsection. Consider

� any binary sequence of finite length,(� � � ��
�
� � �	
 �

� �  
�� � ��. Let � be an empty sequence, i.e, a sequence
of length zero that possesses the properties� � � � � and
� ��� � �. Let * andÆ be binary symbols. If� is a particular
state,�� indicates the other state of the Markov chain, that is, if
� � 
, then�� � �. The parameterization of the Gilbert-Elliott
channel is based on the following lemma.

Lemma 1: The probability of any sequence� generated
by the Gilbert-Elliott channel satisfies the following recurrence
equation:

� ��*Æ� � +�*� Æ�� ��*� � ,�*� Æ�� ���� (12)

where

+�*� Æ� �
!���

!��� � !����
������!���Æ � ����!��Æ�

� !����
!��� � !����

�������!���Æ � �����!��Æ�� (13)

,�*� Æ� �
!���!����

!��� � !����
�������!���Æ � �����!��Æ�

� !����!���
!��� � !����

������!���Æ � ����!��Æ�� (14)

Proof: The probability of any sequence generated by a
GEC model satisfies the relations:

� ��� � (��� ��� �(��� ��� (15)

� ��*� � (��� ���!���� �(��� ��!���� (16)

Hence,(��� �� and(��� ��� are expressed as:

(��� �� �
�!����

!��� � !����
� ��� �

�

!��� � !����
� ��*�� (17)

(��� ��� �
!���

!��� � !����
� ���� �

!��� � !����
� ��*�� (18)

The following equation also holds for the GEC model:

� ��*Æ� � (��� ���!�����������!���Æ � �����!��Æ	

� (��� ��!���������!���Æ � ����!��Æ 	� (19)

Substituting (17) into (18) and rearranging the terms, yields:

� ��*Æ� � � !���!����
!��� � !����

�������!���Æ � �����!��Æ�

� !����!���
!��� � !����

������!���Æ � ����!��Æ��� ���

� � !���
!��� � !����

������!���Æ � ����!��Æ�

� !����
!��� � !����

�������!���Æ � �����!��Æ��� ��*�

� +�*� Æ�� ��*� � ,�*� Æ�� ����

Equation (12) allows us to express+�*� Æ� and,�*� Æ�, and con-
sequently,!, &, ) e( as functions of the probabilities of error
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sequences. Substituting� � - and� � * in (12) yields, re-
spectively:

� �*Æ� � +�*� Æ�� �*� � ,�*� Æ�� (20)

� �**Æ� � +�*� Æ�� �**� � ,�*� Æ�� �*�� (21)

Solving this linear system, we obtain:

+�*� Æ� �
� �**Æ�� � �*Æ�� �*�

� �**�� � ��*�
� (22)

and

,�*� Æ� �
� �*Æ�� �**�� � �**Æ�� �*�

� �**�� � ��*�
� (23)

The following proposition expresses the parameters of the GEC
model in terms of+�*� Æ� and,�*� Æ�, or consequently, in terms
of the probability of error sequences of length, at most, 3.

Proposition 1: If � �
�� 
� � �
�� ���, the parameters of
the Gilbert-Elliott channel are uniquely determined by the four
probabilities� �
�� � �

�� � �


�� � �����. The parameters!
and& are the roots of the quadratic equation:

��� � +��� �� � +�
� 
�	��

���� +��� ��� +�
� 
� � ,��� ��� ,�
� 
�	�� ,��� �� � 
�

(24)

and the parameters( and) are given by:

( �
+�
� 
�!� +��� ����� !� � �& � !�

& � !
�

) �
+�
� 
�& � +��� ����� &� � �!� &�

!� &
�

(25)

Proof: From (13) and (14), we have:

+�
� 
� � ��� &����(� � ��� !���� )�� (26)

+��� �� � &���(� � !��� )�� (27)

,�
� 
� � ���� ) �(���� &���� !�� (28)

,��� �� � ���� ) �(�&!� (29)

From (26) and (27), and from (28) and (29), we get, respectively:

�� +�
� 
�� +��� �� � �.� (30)

& !�
,�
� 
�

,��� ��
� �� � �� !� &� (31)

where.
�
� � � ) � (. Combining (29) and (31) results in the

quadratic equation:

�.!� � �.� ,�
� 
�� ,��� ���!� ,��� �� � 
� (32)

where the same equation holds for&. So, substituting (30) into
(32) we conclude that! and& are the roots of (24). Once we
have determined! and&, we use (26) and (27) to obtain (25).

IV. M ODEL EVALUATION

This section evaluates the accuracy in which the FSC models
described in the previous section approximate the DCCA corre-
lated fading channel. In general, it is difficult to define a unique

measure to judge if a particular model approximates better the
fading channel when compared to other candidates. The criteria
commonly used to make this decision include the minimization
of a distance measure between the probability of error sequences
generated by the model and by the fading channel (e.g. varia-
tional, normalized divergence), the information theoretic met-
ric[3], and the comparison of certain statistics of the models,
such as, autocorrelation function, and packet error rate [7].

Motivated by the results presented in [7], we compare next
the autocorrelation function (ACF) of the DCCA fading model
with the ACF of FSC models. The ACF of a binary stationary
process�������� is given by:

/��	 � E�������� � � ��� � �� ���� � ��� (33)

whereE�0� denotes the expected value of a random variable
0 . A closed-form expression for the ACF of the DCCA model
is given by (5), where the correlation coefficient� given by (6)
is replaced by���� � ������
�� �. Then, it follows from (5)
that for the special case of Rayleigh fading��� � 
�:

/��	 �
�

�� � ��
��

�� �


��������

�� � (34)

The ACF of an FSC model described by the matrices��
� and
���� is expressed as [13]:

/��	 � �
�
�
��������

����
�
�� (35)

for � � �.
The ACF over twenty values of� of the DCCA and the FSC

models are compared in Fig. 1. The parameters of the DCCA
are�� � 
, ����� � �� dB, and
�� = 0.1 (a),
�� =
0.02 (b),
�� = 0.001 (c). Markov models of order up to 6
have been considered. It is observed in Fig. 1(a) that there is
a significant gain in accuracy when the order of the Markov
model is increased from� � 
 (memoryless) to� � �, a
little gain is obtained for� � � and no further gain is observed
for � � �. Also, the ACF’s of the second-order Markov and
the GEC models are very alike. The curves indicate that the
first-order Markov model approximates satisfactorily the DCCA
fading channel for
�� = 0.1. It is worth mentioning that we
could have chosen either the second-order or the GEC model to
approximate the DCCA model, since the ACF’s of these three
models can barely be distinguished in Fig. 1(a). However, we
want to obtain as simple an analytical model as possible at an ac-
ceptable complexity level. This tradeoff between accuracy and
complexity makes this decision somewhat arbitrary. When the
fading rate gets slower the order of the Markov model increases,
as expected. For example, we observe (curves not shown) that
the second-order Markov is satisfactory for
�� � 
�
�. How-
ever, we notice that the ACF of the third-order Markov model is
a bit closer to that of the DCCA model, but this strictness may
not compensate the doubling of the number of states. Again, the
ACF’s of the third-order and the GEC are very similar. When

�� ' 
�
�, the ACF of the GEC model diverges from the
ACF of the DCCA model. This fact is illustrated in Fig. 1(b),
where the curves of the forth and the fifth-order Markov mod-
els approximate better the ACF of the DCCA model than that of
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TABLE I

ORDER OF THEMARKOV MODEL THAT APPROXIMATES THE DCCA

RAYLEIGH FADING CHANNEL FOR SEVERAL VALUES OF��� .


�� � ������ � �� dB) � ����� � �� dB)
0.1 1 1
0.05 2 2
0.03 4 3
0.02 5 4
0.01 6 5
0.001 1 � 1 �

the GEC model. These values of� can be considered as satis-
factory approximations of the DCCA model for
�� � 
�
�.
These conclusions hold for greater sample separations�. In
fact, the ACF’s of the�th-order Markov and the DCCA mod-
els matches perfectly over an interval of length�. The curves
demonstrate that the ACF criterion is reasonably accurate at in-
dicating the order of the Markov model that approximates the
DCCA fading model. Markov models may not be practical for
very slowly fading channels since the number of states grows
exponentially with� and large data sizes are necessary to pa-
rameterize the model. Fig. 1(c) illustrates that the GEC model
with non-observable states appears to be useful for approximat-
ing very slowly varying fading, since it provides a far more com-
pact parameterization. Fig. 2 displays a similar comparison for
the case����� � �� dB, 
�� � 
�
�. It is observed that the
ACF of the DCCA model decreases more rapidly with� when
compared to Fig. 1 (b), indicating a potential to reduce the order
of the Markov approximation.

In order to verify the order� indicated by the ACF method
using a different perspective, we calculate the variational dis-
tance between the�-dimensional target measure� ��
� given by
(3) and the measure obtained by the�th-order Markov model,
namely,� �����
�, which is calculated using (8). The matri-
ces��
� and���� are described in Section III. The variational
distance is defined as:

,� �� ��
� � �
�����
�� �

�
��

�� ��
�� � �����
���

Figure 3 reports the variational distance versus the order� for
several values of
�� , for ����� � ��dB (a),����� � ��dB
(b). Note that a lower distance value indicates a more accu-
rate model. We say that the order of the Markov chain is��,
when the distance converge to approximately a constant value
(roughly zero) for� � ��. The orders indicated by the conver-
gence of the variational distance, for the range of fading envi-
ronments investigated, are consistent with those obtained by the
ACF method. The choice of value��, as mentioned before, is
somewhat arbitrary and Table I summarizes the order indicated
by Fig. 3. We notice that, for slow and medium rate fading, the
increase of the signal to noise ratio from 15 to 25 dB reduces the
order of the Markov model� by 1.

V. CONCLUSIONS

We have developed FSC models that characterize the error
sequence of a communication system operating over a fading
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Fig. 1. Comparison of the autocorrelation functions of the DCCA fading model,
the�th-order Markov model (� � �� �� � � � � �), and the GEC model. The
DCCA model is Rayleigh fading��� � ��, with ����� � �� dB, and���
= 0.1 (a),��� = 0.02 (b),��� = 0.001 (c).
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Fig. 2. Comparison of the autocorrelation functions of the DCCA fading model,
the�th-order Markov model (� � �� �� � � � � �), and the GEC model. The
DCCA model is Rayleigh fading��� � �� with ����� � �� dB, ��� =
0.02.
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Fig. 3. Variational distance versus the order� having��� as a parameter.
Rayleigh fading��� � ��,����� � �� dB (a),����� � �� dB (b).

channel. Markov models of order up to 6 have been proposed
as an approximation to the DCCA model for a broad range of
fading environments. We have used two criteria to estimate the
order of the Markov process: The autocorrelation function, and
the variational distance. Both criteria lead to a similar conclu-
sion that the�th-order Markov model is a good approximation
to the DCCA model. This analysis reinforces the results in [7]
regarding the effectiveness of ACF criterion to estimate the or-
der of Markov models. It is observed that the first-order ap-
proximation is satisfactory for values of
�� around 0.1. For
fast and medium fading rates�
�� 1 
�
��, the�th-order
(for judiciously selected�) is as accurate as the GEC model.
For slower fading rates�
�� ' 
�
�� Markov models of order
greater than 6 are required.
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