Viterbi Decoder Simulation on Nonsymmetric and Erasure

Binary-Input Channels Using Importance Sampling

Bruno B. Albert and Francisco M. de Assis
Departamento de Engenharia Elétrica - Universidade Federal da Paraiba
albert@Qdee.ufpb.br, fmarcos@dee.ufpb.br

Abstract

Importance sampling (IS) is a modified Monte Carlo
(MC) simulation technique that improves computa-
tional efficiency by reducing the variance of a given
simulation estimator. In this paper IS is combined
with error event simulation in order to evaluate ef-
ficiently the performance of Viterbi decoding used
on a nonsymmetric and on an erasure binary-input
channel. Stationary and nonstationary biasing ap-
proaches are employed and comparative results are
presented.

1 Introduction

Computer simulation is frequently used to esti-
mate the digital communication system perfor-
mance, particularly when nonlinearities or band-
limited systems are present. The bit error prob-
ability P, is one of the most used parameter for
evaluating the digital communication system per-
formance, and a number of simulation techniques
can be used to estimate this parameter [1]. The
Monte Carlo (MC) method is the most general of
the techniques, since no a priori assumptions are
made. On the other hand, it is computationally the
most costly of the methods. This cost is related
to the number of observations (samples) that must
be made in order to obtain a certain reliability of
the estimated parameter. In general, it is required
100/ P, samples to obtain a 10% precision related to
the estimator’s standard deviation of the true value
Py [2]. Even for error probabilities around 10~ -

10~3, depending on system complexity, computer
run times may be prohibitive. The modified MC
technique based on importance sampling (IS) can
often reduce significantly the amount of samples for
parameter estimating. The basic idea is to choose
a “biased” simulation distribution which increases
the relative frequence of “important” events, in gen-
eral, error events. In order to obtain an unbiased
estimator, the simulation outputs are weighted by
“a posteriori” likelihood ratio. The IS simulation
design problem is the selection of the simulation
distribution which minimizes the estimator’s com-
putational run time. This technique was success-
ful applied in nonlinear and non Gaussian channels,
particularly in satellite and optical communication
channels. However, few works attempt to apply IS
to coded systems. An article by [3] seems to be the
first attempt, but the IS efficiency gains were quite
modest for large constraint length codes.

In [2], it is shown that the error event method
can be extremely powerful when employed in con-
junction with IS. Additionally, it is shown that the
efficiency gain does not depend on code constraint
length of the convolutional code. In this paper this
method is reviewed and applied to a nonsymmet-
ric binary-input channel modeling an optical on-off
keying (OOK) convolutionally encoded communi-
cation system. A binary erasure channel is also
modeled. In Section 2 the error event IS simula-
tion is presented. Simulation results are shown in
Section 3 and Section 4 concludes the paper.



2 Modified
Method

The modified MC method is based in importance
sampling (IS) technique, differently from the con-
ventional MC method in which the occurrence of
an relevant event contributes with weight one for
the estimate calculation, here, each relevant event
is weighted by a value different from one called im-
portance sampling weight. This weighting process
is related to the sample statistic distribution chang-
ing, in such a way that the relevant (important)
events appear more frequently.

Monte Carlo

2.1 Discrete Memoryless Channel

Given that the input to a discrete memory-
less channel (DMC) is a sequence of n symbols
Uug, U1, ..., un_1 selected from the alphabet X and
the corresponding output is a sequence of symbols
V9,1, ...,Un_1 Selected from the alphabet ), the
joint conditional probability is

P(Y = o, ,Y = ’Un,1|X = UO,M’X = un,l)

n—1
= [ P(Y = okl X = ws)
k=0

This relation mathematically states the memory-
less condition of the channel.

2.2 Error Event Simulation Method

Now, we begin a brief review of the Viterbi decoding
process fundamentals. More details may be found
in [4].

A convenient way to describe the state transitions
of a convolutional encoder as a function of time is a
trellis diagram. A sequence of connected branches
u = (ug,u1,...) defines a path in the trellis. The
code symbols sequence determined by a path u is
defined as x(u) = (zg,z1,...), where z; = z(u;).
The Viterbi decoder output can be viewed as a se-
quence of correlated decisions on possible branches
defined by a trellis path. Decoding errors occur in

bursts, called error events, in which a decoded path
diverges from the correct path. Formally, an error
event u' is a partial sequence of incorrectly decoded
branches, which begins at a correct node, finished
at a correct node, and there is no correct node be-
tween them. The number of branches in an error
event defines its length, and is denoted by L(u').

At instant time j, suppose that the encoder state
is correctly decoded. For this event is defined a ran-
dom variable Ny (j) as the number of erroneously
decoded bits due to an error event which begins at
time j. Note that from the error event definition, a
partial path which begins in a correct node at time
j and finished in a correct node at time j + 1 is an
error event. In this case we call the error event as
trivial error event. A trivial error event has 0 wrong
bits, Ny (§) = 0.

Define the bit error probability when the path u
is transmitted beginning at time j as

By (u,j) = E[No(j)|x (u)]

where E'[] is the expectation operator. In the
case of linear convolutional codes operating on
memoryless binary symmetric channel (BSC) and
with maximum likelihood decoding, P, (u,j) = P,
in other words, the bit error probability does not
depend on neither the correct path u or the time j.
In general the bit error probability P is defined as

Py = E[P (U, j)]

where the expectation is with respect to the ran-
dom information sequence U. If the channel is sta-
tionary but perhaps with memory this expectation
is still independent of j.

Consider a linear convolutional codes over a
memoryless BSC. Without loss of generality, let u
be the all-zero trellis path and j = 0, for estimating
Pb = E[Pb(ll, 0)]

The error event simulation is based on a sum

P, = Z np(u,u’) P (u'|u)
ueé



where £ = £(u,0) is the set of all error events
which occur at time j = 0 when u is the correct
path, ny(u, u’) is the number of postdecoding error
bits caused by decoding the error event u’' instead
of u when x (u) is transmitted, and P (u'|u) is the
probability of decoding u’ given the correct path is
u and is called the specific error event probability.
Two points must be noted in the above sum. First,
the error events u’ € £ have no fixed length, L (u’)
is variable. Second, the sum has infinite terms.
However, it is possible to evaluate P, accurately by
concentrating only on dominant terms.

In the error event simulation method, each run
considers only one error event of the Viterbi de-
coder. For understanding the method we have to
answer the following question: Given the output
channel random sequences Y = (Yo, Y1, ...), when
a decision is made about the jth trellis branch?
This random time instant is denoted by Tp (j) > j-

To answer this question, it is helpful to see how
the Viterbi algorithm works. Let K be the length
of the covolutional encoder shift register. At each
time i, 2% survivor path candidates are recorded,
each one terminating at one of the 2K trellis node.
These candidates to survivor branches terminate at
distinct nodes then they generate distinct candidate
paths. However, if we back trace along these trel-
lis paths, eventually they all merge to a “common
stem”. As a result T (j) is the first time instant
that all back trace paths from 2% candidates merge
to a common stem at time j.

The channel output sequences Y® for the Ith
simulation run is generated by the importance sam-
pling technique, explained in the next subsection.

All candidate paths must begin at the correct
node at time 57 = 0. This means that all path are
survivor candidates until time ¢ = K + 1.

Let J® > 0 denote the time index of the first
decoded branch which merges into a correct node,
i. e., the time index at which an error event is de-
coded. Define Tj(\? = T[(,l)(J () as the time at which
the /th simulation run detect an error event. Each
run only must generate the data sequence Y until
this time. This in important point, it is not nec-
essary generate an infinite sequence Y, of course

. . 1) . .
impossible. However, T]E,I) is a random variable, and

hence, the simulation has a random length.

2.3 Error Event Simulation and Im-
portance Sampling

When a sequence x(u) is transmitted, the true
conditional joint density of the channel output is
f(y|x). The importance sampling uses a modified
joint density, called simulation density, denoted by
f* (y|x). The importance sampling estimate for the
specific error event probability P (u'|u) is

)L (YD)

1 L
)= 2 ek

where I, (y) is the indicator function for decod-
ing v/, I (y) = 1 if u’ is decoded, and 0 otherwise,
w(Y®|x (u)) is the importance sampling weight
function, which must be defined to make the es-
timator P; (u'|u) unbiased, and the parameter L is
the number of simulation runs for this specific error
event u'.

The algorithm stopping time, denoted by TJS,II) =
t, can be determined by verifying the channel out-
put sequence Yo, ...ys, thus Ly (.) can be decom-
posed as

oo
= Z Iu’,t (yO; —eey yt)
t=0

where Ly (yo,....y:) is the indicator func-
tion of the channel output sequences set
{y -’ is decoded and T = t} ,
ity Iw (y) = Lw:(yo,-.,ys) occurs whenever y
belongs to the above set. If fi(yo,...,y¢|x) de-
notes the true joint density of (Yp,...,Y};), and if
i (o, .-, y¢|x) denotes the importance sampling
simulation joint density of (Y, ...,¥:), given the
sequence x is transmitted, then the appropriate
weight function is

thus, the equal-



o

w(ylx) = wi o, - Y2|%) It (Yo, --rs Yt)
t=0

where I; (yo, ..., y¢) is the indicator function of the
channel output set {y : TIE,lI) = t}, and wy (.) is the
ratio

_ ft(yOa "'5yt|x)

wt(y05"'ayt|x) - f*(yO yt|x)‘
t 5 eeey

The weight defined by the above equation is
proved unbiased [2].

3 Simulation Results

We present now some simulation results. We use a
convolutional encoder with code rate R = 1/2 and
constraint length K = 5, with generators go = 23
and g; = 35 in octal. This encoder is sufficiently
complex to make a MC simulation, in some situa-
tions, almost impossible.

We consider a binary asymmetric channel.

The following transition probabilities values
P(y;|z;) are typical of an optical channel with on-off
keying (OOK), extremely dispersive [5]

Pyilz;)) | yi=0 |y =1
x; =0 0,9999 | 0,01
zi=1 10,0001 0,99

Two models of error event simulation with impor-
tance sampling are compared: a stationary model
and a nonstationary model.

The simulation was done in two steps, first the
source transmits only 0’s, and second transmits only
1’s. The bit error probability P, is computed as

Pb = Pb|0P(0) + Pb‘lp(]-)

where Pjy; is the bit error probability when bit
1 is transmitted, i = 0,1. If the source symbols
are generated with equal probabilities than P, =
(Pyjo + Pyj1)/2

In the stationary model we used the same biasing
value at both steps, P*(y; = 1|z; = 0) = P*(y; =
Olz; = 1) = 0,08, when 0’s and 1’s are transmit-
ted respectively. We used 80.000 samples per error
event at each step. These values were defined by
trial and error, so as to reduce the estimated relative
precision . The estimates of the relative precision is
defined by the ratio of the estimator’s standard de-
viation and the estimator mean value. To improve
the overall efficiency of the simulation, for the first
transmitted encoded symbol through the channel
zo = (bo,0,bo,1), where b; ; denotes the jth bit of
the ith transmitted symbol, we use a value 1/2 for
the biasing cross probabilities. Formally, this model
is not anymore stationary, but we shall continue call
it stationary.

In the table below, we present the simulation re-
sults for this model. The first column gives the
Hamming distance for a given error event u’, and
it is the Hamming distance between two symbol se-
quences x(u) and x(u') until the error event time
L(u'). This distance is also called error event dis-
tance, and denoted by d(u,u’). In this simulation
we consider error events up to d(u,u’) < 10. For
a distance d is defined the distance spectrum as
the number of error events with Hamming distance
d, this parameter is shown in the second column.
The information weight is the number of informa-
tion bits errors mny(u,u’) of all error events with
d(u,u’) = d, the third column shows these values.
The fourth column shows the mean values of the
specific error probabilities P (u'|u) of a specific er-
ror event u' occur given the sequence x(u) is trans-
mitted, for all error events with d(u,u') = d. The
relative precision is presented percentually in the
next column.

In the nonstationary model the biasing value is
1/2 for each bit of the specific error event u’ which
differs from the bits of the transmitted path u. In
equation form

P*(yi|lz:) = P(yilzs)
=1/2

7;f bi’] = bi’j
if bi; # bij

where b; ; denotes a bit of the specific error event



Stationary Model Nonstationary Model
Hamming | Number of | Information | P (u'|u) Relative P (u'|u) Relative
Distance | Codewords | Weight Precision (%) Precision(%)
7 2 4 5.01 x 107" | 26.8% 1,04x107° | 3,7%
8 3 12 1.67 x 107 | 121.4% 3,36 x 107" | 3,9%
9 4 20 1.05 x 10710 | 154.4% 2,92 x 101 | 11,5%
10 20 72 2.58 x 10713 | 330.1% 5,27 x 107" | 8,9%

u’ which is being evaluated, and b;; is a bit of
the transmitted path u. In the simulation we used
1,000 samples per error event per step. Again, we
considered error events up to d(u,u’) < 10. The
last two columns in the table shows the obtained
results for this model.

The estimated bit error probability for the first
model is P, = 4.320 x 1079 with 2 x 25 x 80,000 =
4,000,000 runs,, whereas for the nonstationary
model P, = 5.371x10 . and takes 2x25x1.000 =
50.000 runs. A MC model for estimating a BER on
the order of 10~? requires a number between 10 to
100 billions runs to obtain a 10% precision. In or-
der to corroborate the above results, we changed
the convolutional encoder by another simple one,
with R =1/2, K = 4, go = 13, and g; = 15. A
theoretical analysis showed an upper bound P, <
1.94 x 1079 [5]. We considered now error events up
to d(u,u’) < 8, and we found P, = 2.99 x 10~7 with
1.92 x 10 runs for the stationary model (0.08 bias-
ing probability), P, = 2.63 x 10~7 with 24,000 runs
for the nonstationary model, and P, = 1.5 x 10~
with 10® runs for MC simulation.

The method was also applied to a high level inter-
ference channel with a strong signal-to-noise rate.
This channel may be modeled by a pure binary era-
sure channel with no bit errors, in which all inter-
ference is detected and blanked. We used the later
convolutional encoder in the simulation. If 10% of
the total bits are blanked, the estimated BER for
the stationary model was P, = 1.424 x 1079 with
250000 x 12 = 3.0 x 10° runs (0.2 biasing probabil-
ity), for the nonstationary model P, = 2.058 x 106
and it takes 12000 runs. A MC model was also used
and we found P, = 2.080 x 10~% and 102 runs.

4 Conclusion

It is difficult to quantify the “computational effi-
ciency gain”. We coul estimate the ratio of the
numbers of simulation runs Ly;¢/Lrs required for
a specified precision. However we must take care
with these figures, because they do not account for
a number of factors. First, IS requires additional
computing of the IS weight. Second, IS will tend
to produce long nontrivial errors events, and back
tracing overhead may be significant. Nonetheless,
the astronomically high Lyc/Lrs gains far out-
weigh these other factors.

IS technique can be effectively applied to a very
broad range of systems, but as the system com-
plexity grows, the IS technique must be more finely
tuned to the specific problem at hand. The er-
ror event simulation method in conjunction with IS
proved to be extremely efficient as a tool for evalu-
ate the Viterbi decoder.

Nonstationary model’s performance can be seen,
in most cases, superior to the stationary model.
Conceptually the stationary model handle all trans-
mited code word components z(u;) in the same way,
i. e., all components are biased with the same bias-
ing simulation distribution, hence the biasing dis-
tribution is identical in all directions. This is pre-
cisely the case of the conventional variance scaling
method. On the other hand nonstationary model
bias these components in the direction of the spe-
cific error decision region, and can be viewed as a
mean translation method. So we see that only the
error probabilities for error events with relatively
low distances are accurately estimated.

As an extension of this work, we intend to use IS
to evaluate digital communication systems which
use iterative decoding [6]. A first work was pro-



posed recently in [7], where iterative decoding is
analyzed for product codes using IS. The IS tech-
nique presented there is essentially the same idea
presented here for the nonstationary case. When
convolutional codes are used as components codes
we may use Viterbi decoders as component decoder,
and the method presented in this paper may be a
natural base to evaluate these schems.

References

[1]

Michel C. Jeruchim, “Techniques for estimat-
ing the bit error rate in the simulation of digital
communication systems,” IEEE Journal on Se-
lected Areas in Communications, vol. SAC - 2,
no. 1, pp. 153 — 170, January 1984.

John S. Sadowsky, “A new method for Viterbi
decoder simulation using importance sampling,”
IEEE Transactions on Communications, vol.
38, no. 9, pp. 1341-1351, September 1990.

M. A. Herro and J. M. Nowack, “Simulated
Viterbi decoding using importance sampling,”
IEE Proceedings, vol. 135, no. 2, pp. 133-142,
April 1988.

G . D. Forney, “The viterbi algorithm,” Pro-
ceedings of the IEEE, vol. 61, no. 3, pp. 268-278,
March 1973.

Stephen B. Wicker, Error Control Systems for
Digital Communication and Storage, Prentice
Hall, Inc., 1995.

Claude Berrou and Alain Glavieux, “Near opti-
mum error correcting correcting coding and de-
coding: Turbo-codes,” IEEE Transactions on
Communications, vol. 44, no. 10, pp. 1261-1271,
October 1996.

Marco Ferrari and Sandro Belline, “Importance
sampling simulation of turbo product codes,”
I1CC2001, The IEEE International Conference
on Communications, vol. 9, pp. 2773 — 2777,
June 2001.



