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Abstract: In this article, a simple and robust algorithm 
for image compression is proposed. The algorithm is a 
modified version of Creusere´s Robust Embedded 
Zerotree Wavelet (REZW) algorithm [1], where 
arithmetic coding is replaced by Huffman coding. It is 
intended for use in noisy channels such as those found 
in wireless communications. 
 

I. INTRODUCTION 
 
The current trend in telecommunications is towards digital 
networks with integrated services where voice, audio, 
still-image, video, and data signals share a common 
telecommunication network. This trend is observed both 
in wireless networks and in high-speed optical fiber 
networks. The transmission of image and video signals 
tend to be particularly demanding of the communication 
system, in terms of the high rate requirements. Thus, 
particularly in wireless applications, image and video 
compression are important operations for the feasibility of 
such integrated networks. Naturally, these operations must 
be sufficiently robust to deal with the possibility of noisy 
transmission environments. 
 
In this paper we investigate the use of a simple and robust 
method of image compression that shows graceful 
degradation of performance in noisy environments. The 
motivation is its application in low speed, high bit error 
rate (BER) channels such as found in mobile 
communications. The method is based on the embedded 
zerotree wavelet (EZW) algorithm, proposed by Shapiro. 
More specifically, the method is a variation of Creusere´s 
robust embedded zerotree wavelet (REZW) algorithm [1], 
where arithmetic coding is replaced by Huffman coding. 
The advantage of this substitution is the simplicity of the 
resulting technique, and the fact that Huffman coding is 
not a proprietary technology as is arithmetic coding. 
 
The EZW algorithm exploits the multiresolution nature of 
the wavelet decomposition and the correlation that exists 
among wavelet coefficients of similar spatial coordinates 
but different scales. This method is a powerful image 
compression technique that has the feature of progressive 

coding of the image data. This progressive nature is what 
is meant by the term “embedded”. It allows for the 
interruption of the encoded stream at any point, in a way 
that the information content of the truncated stream is 
maximized. Many extensions of the EZW algorithm have 
been proposed. One example is the SPIHT algorithm [3], 
that yields the best rate × distortion performance to date in 
many applications. 
 
Another variation of the EZW algorithm is the cited 
REZW algorithm. This technique was proposed to 
increase the protection of EZW-encoded data against bit 
errors produced by the channel. EZW is very sensitive to 
bit errors because of the resulting error propagation. The 
increased robustness of REZW is achieved by separating 
the wavelet coefficients in groups that are quantized and 
encoded independently. When the encoded stream is faced 
with a bit error, only the data corresponding to the 
particular group of the affected bit is jeopardized. The 
algorithm has a mechanism to stop the decoding of the 
distorted group not far from the error position, to avoid 
error propagation. Like EZW, REZW uses arithmetic 
coding [4] for the entropy coding stage. Arithmetic coding 
was invented in the 1970’s as an alternative lossless 
source-coding scheme that self adapts to the source 
statistics, and that achieves asymptotically optimal 
performance. Nevertheless, there are reasons to consider a 
different entropy coding scheme. Arithmetic coding is not 
a particularly simple scheme, and has the disadvantage of 
being a proprietary technique. 
 
In this article a modified REZW algorithm is proposed, 
where Huffman coding is used as the entropy coding 
operation. The modified algorithm is computationally 
simpler than REZW, at the cost of a small loss in rate × 
distortion performance. The Huffman encoding or 
decoding operation is usually performed by table look-up. 
Although table look-ups can be computationally intensive, 
in the present case the code tables are extremely small (of 
sizes 4 or 5), leading to a very simple Huffman operation.  
 
The article is organized as follows.  The REZW algorithm 
and the proposed modified version are described in 
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Section 2. The results of simulations and comparisons are 
presented in Section 3. Finally, conclusions are presented 
in Section 4. 
 

II. THE REZW AND THE MODIFIED REZW 
ALGORITHMS 

 
We start with a brief description of the EZW algorithm. Its 
general structure is depicted in Fig. 1. 
 
 

 
 
 

Fig. 1: Block diagram of the EZW algorithm. 
 
In the first stage the data is wavelet transformed to reduce 
correlation among pixels. The second phase is known as 
EZW encoding. The transformed data is organized in tree 
structures that link the bits corresponding to wavelet 
coefficients of similar spatial locations, but different 
scales, on each bit plane. The purpose of these tree 
structures is to exploit the correlation that has been found 
to remain among these coefficients. The tree structures 
imposes a reordering of the data that tends to show long 
trees of zeros, the zero trees, that can be efficiently 
compressed. The third stage completes the process with 
arithmetic coding.   
 
In order to exploit the residual correlation among wavelet 
coefficients, these are grouped in a structure known as 
descendence tree. Fig. 2 shows an illustration of such a 
tree. The lowest frequency subband is taken as the root of 
the tree. Each coefficient of this subband is a parent of 
three children, one in each of the subbands of the same 
scale but different orientation (cf. Fig. 2). Each of these 
children coefficients, in turn, have 4 children of similar 
position and orientation on the next scale, and so 
successively.  In Fig. 2, the squares with “x” depict an 
entire descendence tree.  
   
 

 
Fig. 2: Tree structures for EZW encoding 

The EZW encoder scans the wavelet coefficients in a pre-
established order so as to exploit correlation across scales. 
The scan is accomplished in successive bit planes, in a 
way that, for each bit plane, no child is considered before 
its parent, and all coefficients in a particular scale are 
scanned prior to those in a subsequent scale. This encoder 
uses the fact that wavelet coefficients tend to decrease in 
magnitude as the scales become finer. So, if a certain 
coefficient shows a small value of magnitude, there is a 
good chance that all its descendents will also be small.  
 
As wavelet coefficients are scanned, they are 
automatically quantized at different bit planes [5], in a 
process known as successive approximation quantization 
(SAQ). The output of this process is encoded in 4 possible 
symbols. They are: 

Encoded 
 Image 

Origin  al
 Image 

Wavelet 
Transform 

Adaptive 
Arithmetic Coding 

EZW  
Coding 

 
1) POS (Positive and Significant): the coefficient is 

larger that the current threshold and has positive 
sign; 

2) NEG (Negative and Significant): the coefficient 
is larger that the current threshold and has 
negative sign; 

3) IZ (Isolated Zero): the coefficient is smaller than 
the current threshold, but one or more of its 
descendents is larger; 

4) ZTR (Zerotree Root): the coefficient and all of its 
descendents are smaller than the current 
threshold. 

 
The sequence of these symbols and some auxiliary bits are 
finally encoded by the arithmetic encoder and transmitted 
over the channel. 
 
The REZW algorithm was proposed by Creusere [1]. It is 
a variation of the EZW algorithm where the stream of 
transmitted bits is split into a number of subsequences that 
are interleaved prior to transmission. Therefore, when a 
bit error hits one of the subsequences, only that particular 
portion of the overall information is corrupted. The 
REZW decoder has a mechanism to recognize the error in 
that subsequence, and to interrupt the corresponding 
decoding process, so that error propagation is avoided. 
Naturally, the decoding of the other subsequences is 
unaffected by this mechanism. 
 
The overall structure of the REZW algorithm is illustrated 
in Fig. 3. The wavelet coefficients are initially split into S 
groups, which are then independently quantized and 
encoded by a regular EZW encoder. The bit streams are 
then interleaved as appropriate, in bit, bytes or packets, 
prior to channel transmission. The interleaving operation 
is aimed at maintaining the embedded nature of the 
encoding algorithm. 
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For the REZW algorithm to be effective, the group of 
wavelet coefficients pertaining to each subsequence must 
be of equal sizes, and must homogeneously encode the 
image. This way, if a particular group is lost due to 
channel errors, the distortion caused by the partial loss of 
coefficients is uniformly distributed over the image. 
 
 

 

 

 
Fig. 3: The structure of the REZW algorithm. 

 
 
 
Fig. 4 shows an example where the wavelet transform 
over 3 scales has its coefficients split into S=4 groups.  
The possibilities for the number of subsequences (S) is not 
arbitrary. The desired  properties of the algorithm  are 
maintained if S is an integer power of 4. 
 
Let the wavelet coefficients of scale j and position (x,y) be 
denoted by Wj (x,y) The splitting of the wavelet 
coefficients into S=4k groups is governed by   
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where  specifies the group index,  

, and  denotes the integer part of 

the argument (the floor function).  
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Scale and frequency are inversely proportional. For 
example, scales j=0 and j=M-1 correspond to the highest 
and the lowest frequency bands, respectively. 
 
All the coefficients of any given zerotree are kept together 
in the same group. Therefore, the correlation of 
coefficients of different scales and similar positions and 
orientations  are still explores as in the original EZW 
algorithm. 
We note that S can be increased in powers of 4 until the 
point in which the encoder processes a single zerotree per 
subsequence. If the image size is XxY (assuming, for 
simplicity, that X and Y are powers of 2) and M scales of 
wavelet coefficients are used, then the maximum number 
of independent subsequences is S=X.Y/4M. As S is 
increased the algorithm sensitivity to errors is decreased, 
that is, robustness is improved. On the other hand, if the 
channel BER is very small, the rate×distortion 
performance with larger values of S is somewhat inferior 
because of the accompanying overhead. 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Interleaving of bit 
subsequences Sequence 1 Zerotree 

Sequence 2 

Sequence 3 

Sequence 4 Transmission 

Fig. 4: Wavelet coefficients splitting into S=4 groups for 
M=3 scales. 

 
The algorithm considered in this paper is a modified 
version of the REZW algorithm. The modification is 
basically the substitution of the arithmetic encoding stage 
(that is present in both, EZW and in REZW algorithms), 
by a simpler Huffman coding stage. We will refer to it as 
the modified algorithm.  Our aim in replacing the entropy 
encoding stage of the algorithm was the increased 
computational simplicity and the avoidance of proprietary 
technology.  
 
The outputs of the various EZW encoded subsequences 
are represented by symbols of the alphabet {POS, NEG, 
IZ e ZTR} (and by some additional auxiliary bits) in all 
subband, except for the last subband. Since the 
coeeficients in the last subband have no descendents, the 
IZ and ZTR symbols can be coalesced into a single 
symbol, denoted by Z (Zero). Therefore the code alphabet 
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for the coefficients of the last subband is composed of the 
set  {POS, NEG, Z}, which contributes for some reduction 
in the average length of the Huffman code. 
 
An additional symbol must be added to the alphabets of 
the Huffman encoded sources. It is called the STOP 
symbol. The Huffman codeword for this symbol is never 
transmitted. But, in the event of an error in the transmitted 
subsequence, the corresponding Huffman decoder will 
lose its synchronism and after some time, with high 
probability, will read the codeword for the STOP symbol, 
and command the decoder to a halt. In these 
circumstances, the earlier the STOP codeword is met, the 
least amount of corrupt information will be incorporated 
in the reconstructed image. To increase the probability 
that the STOP word is encountered following a 
transmission error, a data scrambler can be incorporated at 
each encoder output, prior to the interleaver, with the 
corresponding descramblers (one for each subsequence) 
being added at the decoder. 
 
The Huffman code was obtained from the empirical 
probabilities of the various symbols in the alphabets. The 
codes were the following. For all scales but the last: {ZTR 
= 1, IZ = 01, POS = 001, NEG = 0001, STOP = 0000}; for 
the last scale: {Z=1, POS = 01, NEG = 001, STOP = 
000}. The choices on the STOP codeword were made so 
that no symbol codeword was longer than the STOP 
codeword. 
   

III. SIMULATION RESULTS 

 
This section describes the results of simulations of the 
proposed algorithm and compares them with Creusere’s 
results.  
 
In our simulations we have utilized the biorthogonal 9/7 
wavelet transform (p=9 e q=7) with 5 levels of 
decomposition. These filters were selected because they 
yield one of the best rate × distortion performances in 
image compression, as investigated by Villasenor et al. 
[5]. 
 
All possible splittings of the original encoded sequence 
were considered, i.e., S = 1, 4, 16, 64 and 256. The 
simulations were done for the compressed rate of 1 bit per 
pixel. The chosen test images were the Lena and the 
Barbara images, with V=512 pixels per column, and 
H=512 pixels per line. The use of scramblers and 
descramblers to reduce the decoding of corrupt 
information, as suggested in the end of Section II, was not 
implemented in the simulations. 
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Fig. 5: PSNR versus BER for the Lena image. 
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Fig. 6: PSNR versus BER for the Barbara image. 
 
 
 
 
 

Figs. 5 and 6 present the simulation results in terms of the 
peak-signal-to-noise ratio (PSNR), in dB, plotted as a 
function of the channel bit error rate (BER), for the Lena 
and Barbara images, respectively.  The curves obtained 
for the various values of S, with the modified algorithm, 
are shown. We note that, as the BER increases, the 
schemes with more subsequences (high values of S) are 
more robust. On the other hand, at very small values of 
BER, the added overhead of using more subsequences 
becomes apparent. 
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Fig. 7: PSNR versus BER with S=1 
(REZW and modified algorithms). 
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 Fig. 8: PSNR versus BER with S=16 
(REZW and modified algorithms). 

 
 
 

  
 
 
 
 
 
 
 
                     (a)                                   (b) 
Fig. 9: Lena reconstruction with the modified algorithm: 

(a) S=16, BER = 10-3, PSNR=24.93 dB; 
(b) S=1, BER = 10-3, PSNR=18.53 dB. 
 

 
 
 

Figures 7 through 13 present a comparison between the 
REZW and the modified algorithms for some values of S. 
In these figures, the PSNR values for the REZW 
algorithm were taken from [1]. Fig. 7 presents a 
comparison for S=1, i.e., when the data sequence is not 
divided into multiple subsequences. Naturally, no increase 
in robustness is observed in this case, but it serves to 
compare the overheads of the algorithms. Fig. 8 presents 
objective quality (PSNR) comparisons for S=16 
subsequences. The added robustness achieved with the 
modified algorithm is illustrated by Fig. 9, where image 
reproductions are shown for BER=10-3, S=16 and S=1. 
Similarly, Figs. 10 and 11 present comparisons to show 
the performances with S=64, and Figs. 12 and 13 illustrate 
the performances with S=256. It is found that the 
substitution of arithmetic code by Huffman codes 
represents a penalty of a fraction of a dB, in most cases. 
Also, the figures demonstrate the subjective quality of 
reproductions obtained with multiple values of S as 
compared to equivalent reproductions with S=1. The 
difference in subjective quality is that of an image with 
some noticeable distortion and a totally useless image. 
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IV. CONCLUSIONS 
 
A simple and robust image compression algorithm has 
been presented. The method is a modified version of the 
REZW algorithm, proposed by Creusere [1].  The 
modification is the replacement of arithmetic coding by 
Huffman coding in the entropy coding stage. Application 
of this algorithm to the Lena and Barbara images shows 
that the PSNR × BER of the modified algorithm is, in 
most cases, a fraction of a dB inferior to that of the REZW 
algorithm (as taken from [1]). Thus, the modified 
algorithm pays a price in its rate × distortion performance, 
but, in compensation, it uses of a simpler and non-
proprietary technology.  
 
The PSNR × BER curves obtained for the Lena and 
Barbara images show that graceful degradation is 
achieved as the channel BER is increased. As expected, as 
the number (S) of encoded subsequences is increased, a 
higher level of robustness (less sensitivity to channel 
errors) is achieved. The results also show the cost of the 
algorithm overhead when the channel BER is very low. 
Naturally, this is higher for larger values of S (around 0.5 
dB for S=64, and around 2.7 dB for S=256). It appears 
that intermediary values of S, such as 64, are a good 
compromise between an appropriate level of robustness 
and a low overhead cost.  
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Fig. 10: PSNR versus BER with S=64 

(REZW and modified algorithms). 
 
 

 
 
 
 
 
 
 
 
 

                          (a)                                   (b) 
Fig. 11: Lena reconstruction with the modified algorithm: 

(a) S=64, BER = 10-3, PSNR=24.32 dB; 
(b) S=1, BER = 10-3, PSNR=16.01 dB. 
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 Fig. 12: PSNR versus BER with S=256 
(REZW and modified algorithms). 

 
 

 
 
 
 
 
 
 
 
 
 

(a) (b) 
 

Fig. 13: Lena reconstruction with the modified algorithm: 
(a) S=256, BER = 10-2, PSNR=26.85 dB; 
(b) S=1, BER = 10-2, PSNR=13.36 dB. 
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