
A Simple and Robust Method for Image
Compression based on the EZW Algorithm

Andrezza A. Gusmão and Max H. M. Costa
Department of Communications – FEEC - Unicamp
P.O. Box 6101 – 13083-970 - Campinas – SP- Brazil

andrezza, max@decom.fee.unicamp.br

Abstract: In this article, a simple and robust algorithm
for image compression is proposed. The algorithm is a
modified version of Creusere´s Robust Embedded
Zerotree Wavelet (REZW) algorithm [1], where
arithmetic coding is replaced by Huffman coding. It is
intended for use in noisy channels such as those found
in wireless communications.

I. INTRODUCTION

The current trend in telecommunications is towards digital
networks with integrated services where voice, audio,
still-image, video, and data signals share a common
telecommunication network. This trend is observed both
in wireless networks and in high-speed optical fiber
networks. The transmission of image and video signals
tend to be particularly demanding of the communication
system, in terms of the high rate requirements. Thus,
particularly in wireless applications, image and video
compression are important operations for the feasibility of
such integrated networks. Naturally, these operations must
be sufficiently robust to deal with the possibility of noisy
transmission environments.

In this paper we investigate the use of a simple and robust
method of image compression that shows graceful
degradation of performance in noisy environments. The
motivation is its application in low speed, high bit error
rate (BER) channels such as found in mobile
communications. The method is based on the embedded
zerotree wavelet (EZW) algorithm, proposed by Shapiro.
More specifically, the method is a variation of Creusere´s
robust embedded zerotree wavelet (REZW) algorithm [1],
where arithmetic coding is replaced by Huffman coding.
The advantage of this substitution is the simplicity of the
resulting technique, and the fact that Huffman coding is
not a proprietary technology as is arithmetic coding.

The EZW algorithm exploits the multiresolution nature of
the wavelet decomposition and the correlation that exists
among wavelet coefficients of similar spatial coordinates
but different scales. This method is a powerful image
compression technique that has the feature of progressive

coding of the image data. This progressive nature is what
is meant by the term “embedded”. It allows for the
interruption of the encoded stream at any point, in a way
that the information content of the truncated stream is
maximized. Many extensions of the EZW algorithm have
been proposed. One example is the SPIHT algorithm [3],
that yields the best rate × distortion performance to date in
many applications.

Another variation of the EZW algorithm is the cited
REZW algorithm. This technique was proposed to
increase the protection of EZW-encoded data against bit
errors produced by the channel. EZW is very sensitive to
bit errors because of the resulting error propagation. The
increased robustness of REZW is achieved by separating
the wavelet coefficients in groups that are quantized and
encoded independently. When the encoded stream is faced
with a bit error, only the data corresponding to the
particular group of the affected bit is jeopardized. The
algorithm has a mechanism to stop the decoding of the
distorted group not far from the error position, to avoid
error propagation. Like EZW, REZW uses arithmetic
coding [4] for the entropy coding stage. Arithmetic coding
was invented in the 1970’s as an alternative lossless
source-coding scheme that self adapts to the source
statistics, and that achieves asymptotically optimal
performance. Nevertheless, there are reasons to consider a
different entropy coding scheme. Arithmetic coding is not
a particularly simple scheme, and has the disadvantage of
being a proprietary technique.

In this article a modified REZW algorithm is proposed,
where Huffman coding is used as the entropy coding
operation. The modified algorithm is computationally
simpler than REZW, at the cost of a small loss in rate ×
distortion performance. The Huffman encoding or
decoding operation is usually performed by table look-up.
Although table look-ups can be computationally intensive,
in the present case the code tables are extremely small (of
sizes 4 or 5), leading to a very simple Huffman operation.

The article is organized as follows. The REZW algorithm
and the proposed modified version are described in

1

Section 2. The results of simulations and comparisons are
presented in Section 3. Finally, conclusions are presented
in Section 4.

II. THE REZW AND THE MODIFIED REZW
ALGORITHMS

We start with a brief description of the EZW algorithm. Its
general structure is depicted in Fig. 1.

Fig. 1: Block diagram of the EZW algorithm.

In the first stage the data is wavelet transformed to reduce
correlation among pixels. The second phase is known as
EZW encoding. The transformed data is organized in tree
structures that link the bits corresponding to wavelet
coefficients of similar spatial locations, but different
scales, on each bit plane. The purpose of these tree
structures is to exploit the correlation that has been found
to remain among these coefficients. The tree structures
imposes a reordering of the data that tends to show long
trees of zeros, the zero trees, that can be efficiently
compressed. The third stage completes the process with
arithmetic coding.

In order to exploit the residual correlation among wavelet
coefficients, these are grouped in a structure known as
descendence tree. Fig. 2 shows an illustration of such a
tree. The lowest frequency subband is taken as the root of
the tree. Each coefficient of this subband is a parent of
three children, one in each of the subbands of the same
scale but different orientation (cf. Fig. 2). Each of these
children coefficients, in turn, have 4 children of similar
position and orientation on the next scale, and so
successively. In Fig. 2, the squares with “x” depict an
entire descendence tree.

Fig. 2: Tree structures for EZW encoding

The EZW encoder scans the wavelet coefficients in a pre-
established order so as to exploit correlation across scales.
The scan is accomplished in successive bit planes, in a
way that, for each bit plane, no child is considered before
its parent, and all coefficients in a particular scale are
scanned prior to those in a subsequent scale. This encoder
uses the fact that wavelet coefficients tend to decrease in
magnitude as the scales become finer. So, if a certain
coefficient shows a small value of magnitude, there is a
good chance that all its descendents will also be small.

As wavelet coefficients are scanned, they are
automatically quantized at different bit planes [5], in a
process known as successive approximation quantization
(SAQ). The output of this process is encoded in 4 possible
symbols. They are:

Encoded
 Image

Origin al
 Image

Wavelet
Transform

Adaptive
Arithmetic Coding

EZW
Coding

1) POS (Positive and Significant): the coefficient is

larger that the current threshold and has positive
sign;

2) NEG (Negative and Significant): the coefficient
is larger that the current threshold and has
negative sign;

3) IZ (Isolated Zero): the coefficient is smaller than
the current threshold, but one or more of its
descendents is larger;

4) ZTR (Zerotree Root): the coefficient and all of its
descendents are smaller than the current
threshold.

The sequence of these symbols and some auxiliary bits are
finally encoded by the arithmetic encoder and transmitted
over the channel.

The REZW algorithm was proposed by Creusere [1]. It is
a variation of the EZW algorithm where the stream of
transmitted bits is split into a number of subsequences that
are interleaved prior to transmission. Therefore, when a
bit error hits one of the subsequences, only that particular
portion of the overall information is corrupted. The
REZW decoder has a mechanism to recognize the error in
that subsequence, and to interrupt the corresponding
decoding process, so that error propagation is avoided.
Naturally, the decoding of the other subsequences is
unaffected by this mechanism.

The overall structure of the REZW algorithm is illustrated
in Fig. 3. The wavelet coefficients are initially split into S
groups, which are then independently quantized and
encoded by a regular EZW encoder. The bit streams are
then interleaved as appropriate, in bit, bytes or packets,
prior to channel transmission. The interleaving operation
is aimed at maintaining the embedded nature of the
encoding algorithm.

2

For the REZW algorithm to be effective, the group of
wavelet coefficients pertaining to each subsequence must
be of equal sizes, and must homogeneously encode the
image. This way, if a particular group is lost due to
channel errors, the distortion caused by the partial loss of
coefficients is uniformly distributed over the image.

Fig. 3: The structure of the REZW algorithm.

Fig. 4 shows an example where the wavelet transform
over 3 scales has its coefficients split into S=4 groups.
The possibilities for the number of subsequences (S) is not
arbitrary. The desired properties of the algorithm are
maintained if S is an integer power of 4.

Let the wavelet coefficients of scale j and position (x,y) be
denoted by Wj (x,y) The splitting of the wavelet
coefficients into S=4k groups is governed by

=
+

+−

+

+−

Ψ

−−
−−

−−
−−

,)12.(
2

2

)12.(
2

2

,

1
1

1
1

),(

xn
x

ym
y

jj

k
jM

jM

k
jM

jM

WyxW (2)

where specifies the group index,

, and denotes the integer part of

the argument (the floor function).

mn k .2+=Ψ

]12,0[−k},{ ∈mn .

Scale and frequency are inversely proportional. For
example, scales j=0 and j=M-1 correspond to the highest
and the lowest frequency bands, respectively.

All the coefficients of any given zerotree are kept together
in the same group. Therefore, the correlation of
coefficients of different scales and similar positions and
orientations are still explores as in the original EZW
algorithm.
We note that S can be increased in powers of 4 until the
point in which the encoder processes a single zerotree per
subsequence. If the image size is XxY (assuming, for
simplicity, that X and Y are powers of 2) and M scales of
wavelet coefficients are used, then the maximum number
of independent subsequences is S=X.Y/4M. As S is
increased the algorithm sensitivity to errors is decreased,
that is, robustness is improved. On the other hand, if the
channel BER is very small, the rate×distortion
performance with larger values of S is somewhat inferior
because of the accompanying overhead.

Interleaving of bit
subsequences Sequence 1 Zerotree

Sequence 2

Sequence 3

Sequence 4 Transmission

Fig. 4: Wavelet coefficients splitting into S=4 groups for
M=3 scales.

The algorithm considered in this paper is a modified
version of the REZW algorithm. The modification is
basically the substitution of the arithmetic encoding stage
(that is present in both, EZW and in REZW algorithms),
by a simpler Huffman coding stage. We will refer to it as
the modified algorithm. Our aim in replacing the entropy
encoding stage of the algorithm was the increased
computational simplicity and the avoidance of proprietary
technology.

The outputs of the various EZW encoded subsequences
are represented by symbols of the alphabet {POS, NEG,
IZ e ZTR} (and by some additional auxiliary bits) in all
subband, except for the last subband. Since the
coeeficients in the last subband have no descendents, the
IZ and ZTR symbols can be coalesced into a single
symbol, denoted by Z (Zero). Therefore the code alphabet

3

for the coefficients of the last subband is composed of the
set {POS, NEG, Z}, which contributes for some reduction
in the average length of the Huffman code.

An additional symbol must be added to the alphabets of
the Huffman encoded sources. It is called the STOP
symbol. The Huffman codeword for this symbol is never
transmitted. But, in the event of an error in the transmitted
subsequence, the corresponding Huffman decoder will
lose its synchronism and after some time, with high
probability, will read the codeword for the STOP symbol,
and command the decoder to a halt. In these
circumstances, the earlier the STOP codeword is met, the
least amount of corrupt information will be incorporated
in the reconstructed image. To increase the probability
that the STOP word is encountered following a
transmission error, a data scrambler can be incorporated at
each encoder output, prior to the interleaver, with the
corresponding descramblers (one for each subsequence)
being added at the decoder.

The Huffman code was obtained from the empirical
probabilities of the various symbols in the alphabets. The
codes were the following. For all scales but the last: {ZTR
= 1, IZ = 01, POS = 001, NEG = 0001, STOP = 0000}; for
the last scale: {Z=1, POS = 01, NEG = 001, STOP =
000}. The choices on the STOP codeword were made so
that no symbol codeword was longer than the STOP
codeword.

III. SIMULATION RESULTS

This section describes the results of simulations of the
proposed algorithm and compares them with Creusere’s
results.

In our simulations we have utilized the biorthogonal 9/7
wavelet transform (p=9 e q=7) with 5 levels of
decomposition. These filters were selected because they
yield one of the best rate × distortion performances in
image compression, as investigated by Villasenor et al.
[5].

All possible splittings of the original encoded sequence
were considered, i.e., S = 1, 4, 16, 64 and 256. The
simulations were done for the compressed rate of 1 bit per
pixel. The chosen test images were the Lena and the
Barbara images, with V=512 pixels per column, and
H=512 pixels per line. The use of scramblers and
descramblers to reduce the decoding of corrupt
information, as suggested in the end of Section II, was not
implemented in the simulations.

.

Fig. 5: PSNR versus BER for the Lena image.

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
10

15

20

25

30

35

40

 Bit Error Probability

S=256
S=64
S=16
S=4
S=1

PSNR (dB)

Fig. 6: PSNR versus BER for the Barbara image.

Figs. 5 and 6 present the simulation results in terms of the
peak-signal-to-noise ratio (PSNR), in dB, plotted as a
function of the channel bit error rate (BER), for the Lena
and Barbara images, respectively. The curves obtained
for the various values of S, with the modified algorithm,
are shown. We note that, as the BER increases, the
schemes with more subsequences (high values of S) are
more robust. On the other hand, at very small values of
BER, the added overhead of using more subsequences
becomes apparent.

1
10

0 9 - 10 8 - 10 7 - 10 6 - 10 - 5 10 4 - 10 3 - 10 2 -

15

20

25

30

35

40
PSNR (dB)

S=25 6
S=64
S=1 6
S=4
S=1

 Bit Error Probability

4

Fig. 7: PSNR versus BER with S=1
(REZW and modified algorithms).

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10

15

20

25

30

35

40

 Bit Error Probability

PSNR (dB)

Lena (Mod.)
Lena (REZW)
Barb. (Mod.)
Barb. (REZW)

 Fig. 8: PSNR versus BER with S=16
(REZW and modified algorithms).

 (a) (b)
Fig. 9: Lena reconstruction with the modified algorithm:

(a) S=16, BER = 10-3, PSNR=24.93 dB;
(b) S=1, BER = 10-3, PSNR=18.53 dB.

Figures 7 through 13 present a comparison between the
REZW and the modified algorithms for some values of S.
In these figures, the PSNR values for the REZW
algorithm were taken from [1]. Fig. 7 presents a
comparison for S=1, i.e., when the data sequence is not
divided into multiple subsequences. Naturally, no increase
in robustness is observed in this case, but it serves to
compare the overheads of the algorithms. Fig. 8 presents
objective quality (PSNR) comparisons for S=16
subsequences. The added robustness achieved with the
modified algorithm is illustrated by Fig. 9, where image
reproductions are shown for BER=10-3, S=16 and S=1.
Similarly, Figs. 10 and 11 present comparisons to show
the performances with S=64, and Figs. 12 and 13 illustrate
the performances with S=256. It is found that the
substitution of arithmetic code by Huffman codes
represents a penalty of a fraction of a dB, in most cases.
Also, the figures demonstrate the subjective quality of
reproductions obtained with multiple values of S as
compared to equivalent reproductions with S=1. The
difference in subjective quality is that of an image with
some noticeable distortion and a totally useless image.

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
10

15

20

25

30

35

40

 Bit Error Probability

PSNR (dB)

Lena (Mod.)
Lena (REZW)
Barb. (Mod.)
Barb. (REZW)

IV. CONCLUSIONS

A simple and robust image compression algorithm has
been presented. The method is a modified version of the
REZW algorithm, proposed by Creusere [1]. The
modification is the replacement of arithmetic coding by
Huffman coding in the entropy coding stage. Application
of this algorithm to the Lena and Barbara images shows
that the PSNR × BER of the modified algorithm is, in
most cases, a fraction of a dB inferior to that of the REZW
algorithm (as taken from [1]). Thus, the modified
algorithm pays a price in its rate × distortion performance,
but, in compensation, it uses of a simpler and non-
proprietary technology.

The PSNR × BER curves obtained for the Lena and
Barbara images show that graceful degradation is
achieved as the channel BER is increased. As expected, as
the number (S) of encoded subsequences is increased, a
higher level of robustness (less sensitivity to channel
errors) is achieved. The results also show the cost of the
algorithm overhead when the channel BER is very low.
Naturally, this is higher for larger values of S (around 0.5
dB for S=64, and around 2.7 dB for S=256). It appears
that intermediary values of S, such as 64, are a good
compromise between an appropriate level of robustness
and a low overhead cost.

5

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10

15

20

25

30

35

40

 Bit Error Probability

PSNR (dB)

Lena (Mod.)
Lena (REZW)
Barb.(Mod.)
Barb.(REZW)

Fig. 10: PSNR versus BER with S=64

(REZW and modified algorithms).

 (a) (b)
Fig. 11: Lena reconstruction with the modified algorithm:

(a) S=64, BER = 10-3, PSNR=24.32 dB;
(b) S=1, BER = 10-3, PSNR=16.01 dB.

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10

15

20

25

30

35

 Bit Error Probability

Lena (Mod.)
Lena (REZW)
Barb. (Mod.)
Barb. (REZW)

PSNR (dB)
40

 Fig. 12: PSNR versus BER with S=256
(REZW and modified algorithms).

(a) (b)

Fig. 13: Lena reconstruction with the modified algorithm:
(a) S=256, BER = 10-2, PSNR=26.85 dB;
(b) S=1, BER = 10-2, PSNR=13.36 dB.

REFERENCES

[1] C. D. Creusere, “A New Method of Robust Image

Compression Based on the Embedded Zerotree
Wavelet Algorithm”, IEEE Trans. Image Processing,
vol. 6, no 10, Oct. 1997.

[2] J. M. Shapiro, “Embedded Image Coding Using
Zerotrees of Wavelets Coefficientes”, IEEE Trans.
Signal Processing, vol. 41, no. 12, Dec. 1993.

[3] A Said and W. A. Pearlman, “A New Fast and
Efficient Image Codec based on Set Partitioning in
Hierarchical Trees”, IEEE Trans. Circuits and
Systems for Video Technology, vol. 6, no. 3, June
1996.

[4] I. H. Witten, R. M. Neal, and J. G. Cleary,
“Arithmetic Coding for Data Compression”,
Commun. ACM, v. 30, June 1987.

[5] M. Rabbani and P. W. Jones, Digital Image
Compression Techniques. SPIE Optical Engineering
Press, 1991.

[6] J. D. Villasenor, B. Belzer and J. Liao, “Wavelet
Filter Evaluation for Image Compression”, IEEE
Trans. Image Processing, v. 4, no. 8, August 1995.

6

