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Abstract: In image template detection, one wants to build an
operator that indicates whether a given template is present in an
image, preferably giving its location. In earlier works, we have
approached the template detection problem by using two-
dimensional discriminative filtering. A discriminative filter
maximizes, for a given template, the energy concentration in a single
sample of its output. In this paper, we frame discriminative filtering
as an impulse restoration problem and propose closed form solutions
for it. Simulation results show that the proposed method works well
on real images.

I. Introduction

Image template detection is usually a very important
halfway step for a computational vision algorithm. In
general, the basic idea of this type of algorithm is to
receive an input image and generate a set of lines, borders,
edges and other well known geometrical forms as outputs.

Discriminative filtering consists of making a
convolution between the image and an operator computed
for a specific template. The expected output has samples
with large power where the template is present and small
power otherwise. It has been proposed by Ben-Arie, et ali
[1-5] and extended for the two-dimensional case by
Mendonça e da Silva [6].

Discriminative filtering can be considered a particular
case of template detection using impulse restoration. In
this technique, an image is processed as a template in an
unknown position corrupted with additive noise. The
objective of the processing is to detect the template as an
impulse in the correct location. In this paper, we analyze
the discriminative filtering model as an impulse
restoration problem.

II. Impulse Restoration: The Classical Problem

In the impulse restoration problem, well approached
by Abu-Naser et ali [7,8], an image is modeled as a
template in a unknown location corrupted with additive
noise. There, this problem was analyzed for one-
dimensional signals. For images, a two-dimensional signal
is transformed in a column vector after all image columns

are concatenated. So, this problem can be stated
mathematically as shown in equation 1:

g(n)  =  f(n-n0) + b(n),    (1)

where g(n) is the image, represented as a sequence,
f(n-n0) is the template centered at the sample n0 and b(n) is
the additive noise, that corresponds to the rest of the
image.

The term f(n-n0) of equation 1 can be rewritten as a
circular convolution between f(n) and the impulse at
location n0. So:

g(n)  =  f(n) * δ(n-n0) + b(n).    (2)

Let F be the NxN circulant square matrix defined by
equation 3.

f(0) f(1) ... f(N-1)

F  = f(1) f(2) ... f(0) (3)
... ... ... ...

f(N-1) f(0) ... f(N-2)

With this definition, we can rewrite equation 2 in
matrix form:

g = F δ  +  b,    (4)

where g, δ e b are Nx1 vectors.
The impulse restoration problem consists of, given the

vector g and the matrix F, estimate the vector δ, because
we assume that the noise vector b is unknown.

Now assuming that the random noise vector b is
gaussian, with zero mean and covariance Cb, and also that
δ is also zero mean with covariance equal to the NxN
identity ( I ), the best estimative for δ (that is, �̂  ),which
minimizes the mean square error E[|| δ - �̂  ||2], and is
linear in relation to the observation g (i.e. �̂  = A g). Using



the orthogonality principle, the best estimate �̂  makes the
error δ - �̂  be uncorreleted to the observation g. So:

E { (δ - �̂  ) g t } = 0   (5)

With the hypothesis that δ and b are uncorraleted, we can
use the following relations:

E { δ δ  t } = I,     (6)
E { δ b t } = 0,       (7)
E { b b t } = Cb .     (8)

Consequently,

A = F t ( F F t + Cb ) 
-1,     (9)

or
�̂   = F t ( F F t + Cb ) 

-1 g .     (10)

The linear estimator of equation 10 is not in the
conventional format, presented in the references [7] and
[8]. However, it can be rewritten as:

�̂   = F t ( F F t + Cb ) 
-1 g =

F t ( F F t + Cb ) 
-1 Cb (F t)-1 F t Cb

-1 g =
F t ( F F t + Cb ) 

-1 (F t Cb
-1)-1 F t Cb

-1 g =
( { F F t + Cb } (F t)-1 ) -1 (F t Cb

-1)-1 F t Cb
-1 g =

( F + Cb (F t)-1 ) -1 (F t Cb
-1)-1 F t Cb

-1 g =
( F t Cb

-1 { F + Cb (F t)-1 }  ) -1 F t Cb
-1 g =

( F t Cb
-1 F + I ) -1 F t Cb

-1 g ,       (11)

which is the most usual form in the literature.

III. Two-Dimensional Discriminative Filtering

When discriminative filters are used for template
detection, one usually wants to maximize the energy of an
output sample whenever a match is found. The two-
dimensional discriminative signal to noise ratio (DSNR2),
defined in [6], is a measure that accounts not only for the
maximum energy of a sample, but also considers its
energy in relation to the other samples. Thus, for two-
dimensional discriminative filters, we need to maximize:

DSNR2   =

ci,j
2

___________________

(
nm
∑∑ cm,n

2) -ci,j
2

(12)

The cm,n coefficients are obtained after a two-
dimensional convolution between an input image window
um,n and a linear operator Θ having impulse response θm,n,
that may be computed for each template to be matched

(see equation 13). The coefficient ci,j is the one where we
wish to concentrate the output signal energy.

cm,n = 
n'm'
∑∑ um-m',n-n'  θm',n' (13)

IV. Parallel Between Discriminative
 Filtering and Impulse Restoration

As pointed out above, discriminative filtering is a
problem equivalent an impulse restoration. We so ask: is
there a way to model two-dimensional discriminative
filtering as the one presented in section 2 ?

To search for this answer, we begin writing the image
as the result of a two-dimensional circular convolution
between the template u(m,n) and the impulse at an
unknown location, corrupted with additive noise:

g(m,n)  =  u(m,n) * δ(m-m0,n-n0) + b(m,n).   (14)

or
G  =  U * δ + B.   (15)

Here, our interest is to put the equations 14 and 15 in a
matrix form resembling equation 4. Therefore, we rewrite
the equation 13 (adding noise) as:

 g
m,n =   {

n'm'
∑∑ u

m-m',n-n'  δm',n' }   +  bm,n    (16)

-t ≤ m',n',m,n ≤ t.

Below, we write some vectors and matrices defined as
in the one-dimensional case, but extended for the two-
dimensional problem. We note that the vectors are
constructed from the image representation as a
concatenation of its transposed rows. The images were
chosen to be square. Note that matrices F and A are block
circulant in this case

g-t,-t

g-t,-t+1

          g    = ... (17)

g-t,+t

...
g+t,+t

δ-t,-t

δ-t,-t+1

           δ    = ... (18)

δ-t,+t

...
δ+t,+t



u0,0 u0,-1 ... u0,+1 u-1,0 ... u+1,+1

F  = u0,+1 u0,0 ... u0,+2 u-1,+1 ... u+1,+2 (19)

... ...

u-1,-1 u-1,-2 ... u-1,0 u-2,-1 ... u0,0

θ0,0 θ0,-1 ... θ0,+1 θ-1,0 ... θ+1,+1

A  = θ0,+1 θ0,0 ... θ0,+2 θ-1,+1 ... θ+1,+2 (20)

... ...

θ-1,-1 θ-1,-2 ... θ-1,0 θ-2,-1 ... θ0,0

where θi,j are the coefficients of the desired circular
convolutor filter.

To clarify the structure of F and A, we will use a
notation based on blocks. Let Hr be the operator that
transforms the row r of a generic window 2 N+1 x 2 N+1
v in a 2 N+1 x 2 N+1 circulant matrix, according to the
following rule (equation 21):

vr,0 vr,-1 vr,-2 ... vr,+3 vr,+2 vr,+1

vr,+1 vr,0 vr,-1 ... vr,+4 vr,+3 vr,+2

... ...

Hr(v) = vr,+N vr,+N-1 vr,+N-2 ... vr,-N+2 vr,-N+1 vr,-N (21)

vr,-N vr,+N vr,+N-1 ... vr,-N+3 vr,-N+2 vr,-N+1

... ...

vr,-1 vr,-2 vr,-3 ... vr,+2 vr,+1 vr,0

With the definition of operator Hr, we can write F and
A:

H0(U) H-1(U) ... H-t(U) H+t(U) ... H+1(U)

H+1(U) H0(U) ... H-t+1(U) H-t(U) ... H+2(U)

... ...

F  = H+t(U) H+t-1(U) ... H0(U) H-1(U) ... H-t(U) (22)
H-t(U) H+t(U) ... H+1(U) H0(U) ... H-t+1(U)

... ...

H-1(U) H-2(U) ... H+t(U) H+t-1(U) ... H0(U)

H0(Θ) H-1(Θ) ... H-t(Θ) H+t(Θ) ... H+1(Θ)

H+1(Θ) H0(Θ) ... H-t+1(Θ) H-t(Θ) ... H+2(Θ)

... ...

A  = H+t(Θ) H+t-1(Θ) ... H0(Θ) H-1(Θ) ... H-t(Θ) (23)
H-t(Θ) H+t(Θ) ... H+1(Θ) H0(Θ) ... H-t+1(Θ)

... ...

H-1(Θ) H-2(Θ) ... H+t(Θ) H+t-1(Θ) ... H0(Θ)

Inspecting equations 22 and 23, we note that F and A
are block circulant, and each Hi(Θ) and Hi(U) is also
block circulant.

Another problem remains: how to guarantee that F -1

has the appropriate format of equation 20, so that the
solution A = F -1 (when Cb = 0) can be transformed in a
convolutor operator ? In fact, it is not a problem, because
the inverse matrix of a block circulant matrix is also block
circulant.

Consider the following example, using equations 22
and 23, where U is the template of equation 24 (900

corner).

0 1 1
U = 0 1 1 (24)

0 0 0

1 0 1 1 0 1 0 0 0
1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0
0 0 0 1 0 1 1 0 1

F  = 0 0 0 1 1 0 1 1 0 (25)
0 0 0 0 1 1 0 1 1
1 0 1 0 0 0 1 0 1
1 1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 1 1

1 1 -1 -1 -1 1 1 1 -1
-1 1 1 1 -1 -1 -1 1 1
1 -1 1 -1 1 -1 1 -1 1

A = 1 1 -1 1 1 -1 -1 -1 1
0,25 -1 1 1 -1 1 1 1 -1 -1 (26)

1 -1 1 1 -1 1 -1 1 -1
-1 -1 1 1 1 -1 1 1 -1
1 -1 -1 -1 1 1 -1 1 1
-1 1 -1 1 -1 1 1 -1 1

θ0,0 θ0,-1 θ0,+1 θ-1,0 θ-1,-1 θ-1,+1 θ+1,0 θ+1,-1 θ+1,+1

θ0,+1 θ0,0 θ0,-1 θ-1,+1 θ-1,0 θ-1,-1 θ+1,+1 θ+1,0 θ+1,-1

θ0,-1 θ0,+1 θ0,0 θ-1,-1 θ-1,+1 θ-1,0 θ+1,-1 θ+1,+1 θ+1,0

θ+1,0 θ+1,-1 θ+1,+1 θ0,0 θ0,-1 θ0,+1 θ-1,0 θ-1,-1 θ-1,+1

= θ+1,+1 θ+1,0 θ+1,-1 θ0,+1 θ0,0 θ0,-1 θ-1,+1 θ-1,0 θ-1,-1 (27)
θ+1,-1 θ+1,+1 θ+1,0 θ0,-1 θ0,+1 θ0,0 θ-1,-1 θ-1,+1 θ-1,0

θ-1,0 θ-1,-1 θ-1,+1 θ+1,0 θ+1,-1 θ+1,+1 θ0,0 θ0,-1 θ0,+1

θ-1,+1 θ-1,0 θ-1,-1 θ+1,+1 θ+1,0 θ+1,-1 θ0,+1 θ0,0 θ0,-1

θ-1,-1 θ-1,+1 θ-1,0 θ+1,-1 θ+1,+1 θ+1,0 θ0,-1 θ0,+1 θ0,0

With a fast analysis, we see that A, the inverse of F,
has the form of a convolutor operator Θ, where

-1 -1 +1
Θ =   0,25 +1 +1 -1 (28)

+1 +1 -1

As a conference:

0 0 0
⇒     Θ * U  = 0 1 0 (29)

0 0 0



which offered a perfect impulse at the center (infinite
DSNR2).

V. Alternative Approach
To The Impulse Restoration

With the formulation of the previous section, we find
Θ that maximizes the DSNR2 for a given template.
However, that computation does not avoid that another
template offers a better DSNR2, when filtered with Θ,
when noise is present. This could cause some false
detections.

A possible solution for this problem is to consider
DSNR2 as a function of Θ and U and look for a Θ which
maximizes the DSNR2 when U varies. This is the same as
the "alternative approach" of the discriminative filtering,
described in [6], but modeled as an impulse restoration
problem.

Expressing the maximization of the DNSR2, as an
impulse restoration problem, we have to minimize
E[|| δ - �̂  ||2], that is, the estimation mean square error.
The solution for the alternative approach is found after
determining the A matrix so that E[|| δ - �̂  ||2], that is a
function ζ(F,A,Cb) (F is the circulant matrix constructed
for a generic template), is minimized when F = F, where F
is the template whose discrimination is desired.

E[|| δ - �̂  ||2] can be expressed as:

E[|| δ - �̂   ||2] = ζ(F,A,Cb) = E { (δ - A g )  t (δ - A g ) } =
E { (δ - A F δ - A b )  t (δ - A F δ - A b ) } =
E { δ t δ   - δ t A F δ   - δ t F  t A t δ   +  δ  t F  t A t A F δ   +
b t At A b } =
E { δ t δ   + b t At A b } +

 E { δ t ( F t A t A F - A F - F t A t ) δ  }  (30)

As we can see, only the second term of the above
result depends on F. It is necessary that its minimum
occurs when F = F. We then rewrite this term as:

E { δ t ( F t A t A F - A F - F t A t ) δ  } =
E { δ t ( I - AF ) t ( I - AF ) δ  } - 1   (31)

Since,

E { δ t ( I - AF ) t ( I - AF ) δ  }  =
E { || ( I - AF ) δ ||2 }  ≥  0 ,   (32)

the minimum error is obtained when inequation 32
becomes zero for F = F. For this case, it is:

A = F -1 . (33)

An interesting characteristic of this result is that the
linear estimator obtained with the alternative approach
does not depend on any noise statistics.

VI. A Mixed Approach

Another alternative is to mix the formulations of the
two previous sections, as made in [6].

The mixed approach weights two terms when we look
for the operator A. The first term ( E[|| δ - �̂  ||2] ) is such
that the smaller it is, the larger DSNR2. The second one
( E { || ( I - AF ) δ ||2 } ) is such that the smaller it is, the
closest the solution is to the alternative solution.

Equation 34 shows how these terms can be weighed by
a constant K (0 ≤ K ≤ 1):

DF(A) =
(1-K) E[|| δ - �̂  ||2] + K E [|| ( I - AF ) δ ||2]
= (1-K) E[|| δ - AFδ  - Ab ||2] + K E [|| ( I - AF ) δ ||2]  (34)

By hypothesis, the impulse δ and the noise b are
uncorrelated, so the equation 34 can be rewritten using the
following form:

DF(A) =
(1-K) E[|| δ - AFδ  - Ab ||2] + K E [|| ( I - AF ) δ ||2]
=   (1-K) E[|| δ - AFδ ||2]  + (1-K) E[|| Ab ||2] +

K E [|| ( I - AF ) δ ||2]
=   (1-K) E[|| ( I - AF ) δ ||2] + (1-K) E[|| Ab ||2] +

K E [|| ( I - AF ) δ ||2]
=   E[|| ( I - AF ) δ ||2] + (1-K) E[|| Ab ||2]

 (because δ and b are uncorrelated)
=   E[|| δ - AFδ  - A {(1-K)1/2b}||2]
=    ζ(F,A,{1-K}Cb).   (35)

The result of equation 35 is very significant, because it
says that the mixed solution is obtained using the same
solution of the one of section 4, changing Cb by
(1-K) Cb. Then, the value of A, using the mixed approach,
is:

A = F t ( F F t + {1-K}Cb ) 
-1,     (36)

or
  A = ( F t Cb

-1 F + {1-K} I ) -1 F t Cb
-1

.   (37)

Note that, for K = 0, equation 36 is equivalent to
equation 9 and, for K = 1, it is equivalent to equation 33.

VII. Simulations

To simulate the algorithm used for the discriminative
filter computation, we used the same detection scheme as
the one presented in [6]. The chosen templates were 7x7
450, 900 and 1350 corners. Figure 1 shows some results
presented in references [6] and [2]. Figure 2 shows the
simulations obtained with the circular filters computed
using the method described in section 5

The computation of the discriminative filters [6]
requires the use of some numerical optimization, while the



method presented here is analytical. Then, it can be
concluded that the computation of the filter using the
method described in this paper is more accurate. This can
be confirmed after analyzing figures 1 and 2. We can see
that the corners detected by the method of this paper were
well discriminated and there was a small number of false
detections, unlike of the original method.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 1: (a)(b)(c) Detected 900, 450 and 1350 corners (equivalent method
of section 4). (d)(e)(f)(g) Detected corners in mixed method. (h) Results
of [2].

(a) (b)

Figure 2: (a)(b)(c) Detected 900,
450 and 1350 corners (method of
section 4).

(c)

As a comparing factor, the threshold used for template
detection (figure 2), that is the minimum required DSNR2,
is 0.5, while the threshold in [6] was 0.09. It is a very
significant improvement.

One difficulty of the method proposed in this paper is
that the method requires that F be invertible and, in some
cases F may be ill conditioned. For example, the 900 and
1350 corners do not cause any problems and were
constructed as in equation 24 (using a 7x7 format).
However, this was not the case for the 450 corner, that
generates ill conditioned matrices. This problem can be
solved by shifting it by one pixel relative to its center.

VIII. Conclusions

In this paper, we present discriminative filtering
modeled as an impulse restoration problem. The main
objective of this proposed method is to obtain a two-
dimensional filter that, when convoluted with the image
template, generates as output an image with the energy
concerned in only one sample. The advantage of the
proposed method in relation to the references [6,2] is that
it does not need any optimization algorithm for the filter
computation. The simulations show that the method works
very well with real images.
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