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ABSTRACT 

 
Edge detection is an important operation in many 
image-processing applications. Anisotropic diffusion 
is one of most reliable edge detection methods. There 
are many anisotropic diffusion techniques for gray-
scale images. However, there are only few works on 
the diffusion for color images, and these all use the 
traditional diffusion function defined by Malik-
Perona. Recently, “robust anisotropic diffusion” was 
proposed for grayscale images. This method is based 
on Tukey’s robust estimator, and it converges much 
faster than traditional Malik-Perona’s diffusion. 
Consequently, the new technique better preserves 
edges and attenuates undesirable noises. So, the edge 
detection becomes even more reliable. In this paper, 
we propose to use the Tukey’s estimator to detect 
edges in color images. This technique is executed 
through two independent diffusion processes. In the 
first, the complex chromaticity function is diffused. 
The second process diffuses the scalar intensity. The 
results of these two diffusions are combined to detect 
edges. We have compared the obtained results with 
the Malik-Perona’s conventional technique. The new 
method indeed converges faster, yielding sharper 
edges. 
 

1. INTRODUCTION 
 
The linear scale-space of a grayscale image G is the 
series of images obtained by filtering G with Gaus-
sian low-pass filters with different standard devia-
tions. The scale-space allows us to observe and proc-
ess image G in different scales. Some image-
processing algorithms are better to execute in a rough 
scale. Once a rough solution is found, a sharp image 
is processed to obtain a more accurate solution. 

Originally, the anisotropic diffusion was 
proposed to obtain an alternate scale-space, by using 
anisotropic diffusion instead of the Gaussian filter. 
The nonlinear scale-space so obtained presents a very 
interesting property. Important edges remain sharp 
even in rough resolutions, while small edges are fil-
tered out. A parameter can adjust which edges must 
be considered “important” and which must be con-
sidered “marginal.” 

Surprisingly, the anisotropic diffusion used 
to obtain nonlinear scale-space was found to be one 
of most reliable edge detectors. Surely, the edge de-
tection is a very important image-processing opera-
tion. Thus, many anisotropic diffusion techniques 
have been proposed for grayscale images [1, 2, 3, 4]. 
 The anisotropic diffusion diffuses grayscale 
values in homogenous regions, thus attenuating 
noises and eliminating marginal edges. Meanwhile, it 

inhibits the diffusion in borders of objects, what 
sharpens important edges. Consequently, any simple 
segmentation and/or edge detection algorithms can be 
used afterwards, because an image pre-processed by 
anisotropic diffusion will have clear edges and few 
noises. 
 In the literature, there are some works on 
anisotropic diffusion for color and multi-spectral im-
ages [5, 6]. These works use the anisotropic diffusion 
process originally defined by Malik and Perona. Re-
cently, Black et al. [2] discovered that the Tukey’s 
robust estimator converges faster than Malik-
Perona’s function, yielding a more reliable and faster 
edge detection for grayscale images. A grayscale 
image processed by Tukey’s diffusion is considerably 
sharper than the one processed by Malik-Perona’s 
diffusion. 
 In this paper, we use the anisotropic diffu-
sion based on Tukey’s function to detect edges in 
color images. We compare the results of our method 
with the results yielded by Malik-Perona’s diffusion. 

Our method first transforms the color image 
into HSI color space. Then, hue and saturation is re-
garded together as a chromaticity complex field, 
while the intensity is considered a scalar field. We 
perform two independent anisotropic diffusions: one 
on the chromaticity complex field and another on the 
luminosity scale field. The results of two diffusions 
are merged together to detect edges. 
 This paper consists of four sections. We 
present in second section the representation of color 
images. We describe in section 3 the complex anisot-
ropic diffusion and edge detecting algorithms. In sec-
tion 4, we present the obtained results. Finally, in 
section 5 we present our conclusions. 

 
2. REPRESENTATION OF COLOR IMAGE 

 
A color image C is represented in RGB color space 
as 

[ ] 23,)(),(),()( !" ∈∈= xxBxGxRxC , 
where R(x), G(x) and B(x) are respectively red, green 
and blue channels, normalized between 0 and 1. 
Many image-processing textbooks (as [7]) describe 
the conversion technique from RGB color space into 
HSI. After the conversion into HSI color space, the 
image C is represented as 

[ ] 23,)(),(),()( !" ∈∈σϑ= xxlxxxC , 
where ϑ(x), σ(x) and l(x) are respectively hue, satura-
tion and intensity channels. Hue is an angle and it is 
usually denoted in radians. The saturation and inten-
sity are normalized to range from 0 to 1. 
 Hue ϑ(x) and saturation σ(x) channels form 
together the complex chromaticity k(x). Saturation 



represents modulus and hue represents angle of com-
plex number [5]: 

))(exp()()( xjxxk ϑσ=  
 Hue ϑ(x) is defined in the interval [0, 2π), 
where 0 means red, 2π/3 means green and 4π/3 
means blue. According to the circular nature of hue, 
the difference between two hues ϑ(x1) and ϑ(x2) must 
be defined as: 

[ ])()(2,)()(min 2121 xxxx ϑ−ϑ−πϑ−ϑ . 
 

3. COLOR ANISOTROPIC DIFFUSION AND 
EDGE DETECTION 

 
3.1. Robust anisotropic diffusion 
 
In order to perform diffusion, the time variable t is 
added to definitions. Thus, the complex chromaticity 
should be defined as: 

)),(exp(),(),( txjtxtxk ϑσ= , 
where t ∈  """" represents the time parameter or the 
number of iterations. The robust anisotropic diffusion 
of chromaticity ),( txk  is performed through the par-
tial differential equation below [2, 5]: 
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where div and ∇  denote respectively divergent and 
gradient operators. The function 

( )),(),( txkftxc ∇=  
controls the rate of diffusion according to the gradi-
ent modulus. The classic diffusion function was de-
fined by Malik-Perona. It decreases monotonically 
with the gradient magnitude. For chromaticity diffu-
sion, the Malik-Perona’s function should be defined 
as: 
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where γ is the contrast parameter, that is, the thresh-
old to decide whether the diffusion will be performed 
or not, and δ is the scale regularization parameter [3]. 
The gradient of complex chromaticity ),( txk  and its 
magnitude are defined: 

( ) ( ))(exp),(),(),( xjtxjtxtxk ϑϑ∇σ+σ∇=∇  and 
222 ),(),(),(),( txtxtxtxk ϑ∇σ+σ∇=∇ . 

Note that in modulus of chromaticity gradient, the 
variation of hue is weighted by the saturation. This 
rule conforms to the fact that the less saturated a 
color the less hue is psychologically perceived. 

Recently, Black et al. [2] proposed the use 
of Tukey’s robust estimator for the grayscale diffu-
sion. For chromaticity diffusion, it can be written as: 
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 We have used the discretization described in 
[2] to numerical implementation of equation (1): 
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where )(t
sϑ  is the hue of pixel s in iteration step (t); λ 

is the diffusion rate (for example, 1.0); and ηs is the 
set of neighbors of pixel s (4-neighborhood or 8-
neighborhood are the most usual). As saturation and 
hue are mixed up in the modulus of chromaticity gra-
dient, these two components together determine the 
rate of diffusion. The parameter ∇ϑ s,p represents the 
gradient of hue at pixel s in relation to neighboring 
pixels p∈η s. Saturation is discretized similarly: 
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In this case, )(t
sσ  represents the saturation of pixel s 

at iteration (t). The parameter ps,σ∇  is the gradient 
of saturation at pixel s in relation to the neighboring 
pixels p∈η s. 

The corresponding equations to be used in 
Tukey’s diffusion are: 
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The scale regularization parameter δ used 
both in ( )|),(|1 txkf ∇  and in ( )|),(|2 txkf ∇  should 
be chosen according to the intrinsic properties and 
domain of values of the two functions, since they 
have different threshold levels to identify edges. 

The diffusion of intensity or luminosity 
l(x, t) is performed by an analogous process. The 
intensity is filtered by equation (1), replacing com-
plex chromaticity k(x, t) by scalar intensity l(x, t). 
The discretization is also similar to that of chroma-
ticity. Actually, the intensity diffusion process is a 
grayscale anisotropic diffusion, since it is executed 
completely independent from chromaticity. Finally, 
the three diffused components are mixed up and the 
final processed image is obtained. 
 
3.2. Edge detection 
 
The anisotropic diffusion pre-processes the image in 
order to facilitate the edge detection. However, it 
does not directly detect edges. To find edges, another 
algorithm must be executed. We have used a simple 
edge detection algorithm based on the magnitude of 
the gradient. If the magnitude is superior to a thresh-
old value, the pixel is considered to belong to an 
edge. Note that the diffusion was performed in pixels 
whose gradient magnitudes were inferior to the 
threshold value. So, pixels with gradient magnitudes 
above this threshold value must be considered as 
edges. Consequently, to detect edges after Malik-
Perona’s diffusion, the following inequalities must be 
computed: 
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where 2δ  is the threshold value. A pixel is consid-
ered to belong to edge if at least one of the three ine-
qualities holds. The same procedure was used to 
Tukey’s diffusion, changing the threshold from 2δ  
to δ. 
 

4. RESULTS 
 
Tukey’s and Malik-Perona’s anisotropic diffusions 
for color images have been implemented and tested 
to find out the advantages and disadvantages of each 
method. 
 Malik-Perona’s diffusion was iterated 500 
times, using scale parameter δ=1660 for complex 
chromaticity and δ=80 for scalar intensity. After-
wards, three HSI components were mixed to recon-
struct the color image. Finally, the edge detection 
algorithm was applied. 
 Tukey’s diffusion was also iterated 500 
times, but scale parameter was δ=1000 for complex 
chromaticity and δ=22 for intensity.  
 Figures 1a, 2a and 3a correspond to the hue, 
saturation and intensity of original image. Figures 1b, 
2b and 3b correspond to the same images processed 
by Malik-Perona’s diffusion. Hue and saturation (fig-
ures 1b and 2b) were diffused together in the chroma-
ticity complex field, while intensity (figure 3b) was 
processed separately. Figures 1c, 2c and 3c are the 
outputs of hue, saturation and intensity images proc-
essed by Tukey’s diffusion. Once again, hue and 
saturation were diffused together, while intensity was 
diffused independently. 

Figures 4a, 4b and 4c correspond respec-
tively to: the original color image; the color image 
diffused by Malik-Perona’s process, obtained by 
merging figures 1b, 2b and 3b; and the color image 
diffused by Tukey’s process, obtained by merging 
figures 1c, 2c and 3c.  

Note in figures 4b and 4c that Malik-
Perona’s diffusion blurs edges, no matter if the edge 
is important or not. Meanwhile, Tukey’s diffusion 
sharpens the principal edges while filtering out mar-
ginal edges. Malik-Perona’s diffusion can erase im-
portant edges if iterated many times, but Tukey’s 
diffusion does not erase any significant edges. 

When the average quantity of diffusion gets 
close to zero, we say that the diffusion process has 
terminated. The Malik-Perona’s diffusion never ter-
minates, what causes edge blurring as the number of 
iterations (time parameter t) increases. The Tukey’s 
diffusion terminates after some iteration, that is, the 
average quantity of diffusion becomes very close to 
zero. This statement is confirmed by the average 
quantity of diffusion in three HSI components (fig-
ures 6a, 6b and 6c).  

Figure 6a depicts the average quantity of 
hue diffusion. Tukey’s diffusion is depicted in blue 

and Malik-Perona’s in red. In Tukey’s method, the 
diffusion is 0.000000 from iteration 31 on. Mean-
while, for Malik-Perona’s method the average diffu-
sion is 3.103196 in iteration 500. This means that the 
diffusion process has not converged even after 500 
iterations. 

The convergence of saturation is also faster 
using Tukey’s technique. Figure 6b depicts the aver-
age saturation diffusion. Using Tukey’s method, the 
diffusion is 0.000000 from iteration 61 on. Using 
Malik-Perona’s, the average diffusion is 0.566333 
even at iteration 500.  

Two diffusions apparently converge for the 
intensity component. However, the convergence is 
faster using Tukey’s technique. Using Tukey, the 
diffusion is 0.000000 from iteration 46 on. Using 
Malik-Perona, the diffusion is 0.000000 from itera-
tion 50 on. 

From the facts observed above, we can con-
clude that Tukey’s diffusion terminates once edges 
are detected. Meanwhile, Malik-Perona’s diffusion 
never terminates. Thus, edges are better enhanced 
using Tukey in all three HSI components, and conse-
quently the edge detection becomes more reliable 
using Tukey’s diffusion. 
 

5. CONCLUSIONS 
 
In this paper, we have presented a new anisotropic 
diffusion method based on the Tukey’s robust estima-
tor for edge detection in color images. The edge de-
tection in color images processed using Tukey’s 
method was faster and trustier than Malik-Perona’s. 
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(1a) Hue of original image. 

 
 

 
(1b) Hue of image processed with 

Malik-Perona’s diffusion. 

 
 

 
(1c) Hue of image processed with 

Tukey’s diffusion. 
 
 

 
(2a) Saturation of original image. 

 
 

 
(2b) Saturation of image processed 

with Malik-Perona’s diffusion. 

 
 

 
(2c) Saturation of image processed 

with Tukey’s diffusion. 
 
 

 
(3a) Intensity of original image. 

 
 

 
(3b) Intensity of image processed 
with Malik-Perona’s diffusion. 

 
 

 
(3c) Intensity of image processed 

with Tukey’s diffusion. 
 



 
 
 
 
 
 
 
 
 

 
 
 

 
(4a) Original color image. 

 
 
 

 
(4b) Image restored using Malik-

Perona’s diffusion. 

 
 
 

 
(4c) Image restored using com 

Tukey’s diffusion. 
 
 
 

 
(5a) Edges of original color image. 

 
 
 

 
(5b) Edges of image restored by Ma-

lik-Perona’s diffusion. 

 
 
 

 
(5c) Edges of image restored by Tu-

key’s diffusion. 
 



 

 

 
(6a) Average of hue diffused versus number of iterations. 

Tukey in blue and Malik-Perona in red. 
 

 
(6b) Average of saturation diffused versus number of itera-

tions. Tukey in blue and Malik-Perona in red. 
 

 
(6c) Average of intensity diffused versus number of iterations.  

Tukey in blue and Malik-Perona in red. 
 


