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Abstract—Among the best performing video coding methods are the ones
based on the matching pursuits algorithm. In them, the motion compen-
sated frame difference is decomposed on an overcomplete dictionary of
atoms in a greedy fashion. It is represented by a sequence of pairs speci-
fying the atoms used and their corresponding coefficients. The rate� dis-
tortion trade-off is achieved by varying both the number of atoms and how
the coefficients are quantized. Several strategies have been presented in or-
der to solve the problem of, given a target rate or distortion, determining
the optimum number of atoms as well as the quantizers of the correspond-
ing coefficients. In this paper we propose a novel method for performing
matching pursuits quantization, based on the notion of decomposition in
generalized bit-planes. The structure of such decompositions is such that
once the decomposition is carried out, it is already quantized, and there is
no need to set up any quantization parameters. It does so by generating a
decomposition that is readily organized in bit-planes. It provides an elegant
solution to the trade-off between quantization of coefficients and number of
passes in the matching pursuits algorithm. In fact, we show that it can be
regarded as a generalization of any decomposition on a dictionary followed
by linear quantization of the coefficients. In addition, we present a theorem
that sets bounds for the R-D performance of such generalized decomposi-
tions. We test the effectiveness of the proposed method using the framework
of Neff and Zakhor’s matching pursuits video encoder. The results obtained
are promising, presenting, without any ad-hoc assumptions about the R-D
behavior of the coded frames or any increase in computational complex-
ity, a significant improvement over the classical matching pursuits video
coders. Also, the results are as good as the ones obtained employing more
sophisticated strategies.

I. I NTRODUCTION

�
HE classical algorithms used in video coding are based on
the block discrete cosine transform (DCT). An effective

alternative for such methods is given by decompositions over
redundant dictionaries using the Matching Pursuits (MP) Algo-
rithm [1]. An efficient video encoder using the MP Algorithm
has been presented by Neff and Zakhor [2]. It provides good
coding efficiency and is free from blocking artifacts. Its success
has encouraged research on this topic.

In the MP algorithm we usually decompose a signal� of di-
mension� on a redundant dictionary� � ������� � � � ����,
���� � �, ��. The�� are in general referred to as atoms. The
dictionary is said to be redundant because, in general,� � � .
The signal� is then approximated in� passes as [1]

� �
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���

����� (1)

The pairs���� 	�� are computed by algorithm 1 below
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Algorithm 1

1. Start with� � �, 
 � �.
2. Repeat until a stop criterion is met
(a) Choose	� � ��� � � � ��� such that

� � ��� � ���
�����

�� � ���.

(b) Choose�� �� ����� �.
(c) Replace� by� 	 ����� .
(d) Increment
.
3. Stop.

Details of this algorithm can be found in [1]. There, it is
shown that the energy of the residuals decrease monotonically
as the number of passes P is increased, and tends to zero as P
tends to infinity.

From the above, we see that the Matching Pursuits algo-
rithm performs a kind of successive approximation of a signal
�, since, for each atom added, the error in the approximation
decreases [1]. Therefore, in principle, the approximation er-
ror can be controlled by the number of atoms used. However,
when the coefficients�� are quantized, the approximation er-
ror also depends on how the quantization is performed. Sev-
eral strategies have been proposed for dealing with this problem
in the literature. In [3] the quantizer of the coefficients�� in
each frame is chosen using a two-pass procedure. In the first
pass, the frame is decomposed without the coefficients�� being
quantized. Then, the quantizer of the second pass is chosen as
60% of the smallest
��
 used. In [3] a simplification in this al-
gorithm is proposed, aiming at the reduction of the complexity
of this two-pass algorithm. The first pass is eliminated and the
quantizer is chosen based on the smallest
��
 of the previous
frame. The results of the two-pass and one-pass algorithms are
very similar, although the former performs a little better than the
latter. Rate�distortion approaches have also been proposed, as
the one in [4]. There, an adaptive entropy-constrained quanti-
zation scheme is used, based on the fact that the magnitude of
the coefficients are bounded by an exponential function of the
number of passes.

It is interesting to observe that many of the state of the art
image compression methods use successive approximation [5].
They achieve successive approximation by encoding the wavelet
transform coefficients in bit-planes. For each added bit-plane,
the error in the representation decreases. This is for example the
case of the JPEG2000 standard [6]. Taking this into consider-
ation, it is natural to wonder whether it could advantageous to



perform the quantization of the MP coefficients in bit-planes. In
this paper we propose a novel algorithm to perform an MP-like
decomposition in which a signal is decomposed in generalized
bit-planes, each bit-plane being composed by a set of atoms. In
it, unlike the classical Matching Pursuits, there are no coeffi-
cients to be quantized, that is, only the atoms corresponding to
each generalized bit-plane need to be transmitted. It provides
an elegant solution to the coefficient quantization problem in
the MP algorithm, and presents improvements over the existing
MP-based encoders. This paper is organized as follows: Sec-
tion II outlines the theory of signal decomposition in generalized
bit-planes, that is the base of the proposed algorithm. In sec-
tion III we describe a practical video encoder using generalized
bit-planes, with the experimental results described in section IV.
Section V presents the conclusions.

II. SIGNAL DECOMPOSITION INGENERALIZED

BIT-PLANES

Suppose� is a signal that can be decomposed in a redundant
dictionary� � ������� � � � ����, ���� � �, �� as

� �

��
���

���� (2)

Without loss of generality, we are assuming that��� � �. Also,
note that we are considering that the dictionary� is complete,
so that an expansion in� terms can represent� with zero dis-
tortion. In addition, since���� � �, there is an expansion in the
form of equation (2) such that
��
 � �.

Since
��
 � �, we can write the binary representation for��

as�� � 
�
��

��� �
������. 
� � �	�� �� is the sign of��, and

���� � �	� ��. Replacing this value of�� in equation (2) we have
that
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Note that since
� � �	�� ��, then �� � 
��� � � �

�
���
��� � � � �
���. Now, defining the indexes���� such
that, for � � ��� �� � � � � ���, ������� � �, and zero elsewhere,
the summation in equation (3) can be expressed as

� �

��
���

���
	��
���

����� (4)

Equation (4) can be regarded as a generalized bit-plane de-
composition of the signal�. The bit-plane� is composed by the
functions����� for � � �� � � � � �� . In [7] a convergent algorithm
for finding such decompositions has been proposed, in the same
philosophy of the MP algorithm. In fact, the algorithm proposed

in [7] finds decompositions of the following form

� �

��
���

��
	��
���

����� (5)

These decompositions are more general then the one in equation
(4), since the term��� has been replaced by�� , for 	 � � � �.
We refer to� as theapproximation scaling factor. In [7] there
have been derived conditions for the algorithm to be convergent
(that is, for any signal� be approximated with arbitrary preci-
sion by adding a sufficient number of terms to the summations).
These conditions impose that
��� � 


� , where
��� is the
largest angle between any signal� � �� and the closest atom in
dictionary�. However, even for signals of moderate dimension
(e.g.,� � ��), the dictionaries that could provide
��� � 


�

would have very large cardinality. This would lead to inefficient
decompositions from an R-D perspective, since a large number
of bits would be needed to encode the indexes� ���.

In this paper we propose a novel algorithm for finding such
decompositions, that is convergent whenever	 � � � � and

��� � 


� . The advantage of this algorithm is that
��� � 

�

is only a very mild restriction, being satisfied whenever� is
complete [1]. In this algorithm a greedy decomposition is car-
ried out by adding one� ���� at a time, until a rate and/or distor-
tion criterion is met. Given a dictionary� � ������� � � � ����,
���� � �, ��, the algorithm is as follows (the input signals are
normalized so that��� � �):�

�

�

�

Algorithm 2

1. Start with� � �, � � �.
2. Repeat until a stop criterion is met
(a) Choose�� � ��� � � � � �� such that

� � �
� � ���
�����

�� � ���.

(b) Choose�� �

�

� �� � �
��


� ���

�
.

where �y� is the smallest integer larger than or
equal to y.

(c) Replace� by� 	 ����
� .
(d) Increment�.
3. Stop.

Note that Algorithm 2 approximates� in � passes as

��� � �

��
���

����
� (6)

If we define �� as the number of values� such that
�� � �, we can rename the corresponding indexes�� as ����
for � � �� � � � � �� . Therefore, if we make the dictionary� in Al-
gorithm 2 equal to�, then equation (6) is equivalent to equation
(5) for� ��.



We can say that Algorithm 2 is convergent if
��
���

�
�� � � �.

In that sense, its convergence is guaranteed by Theorem 1 (the
proof can be found in the appendix).

Theorem 1: Be � � �
� , ��� � �, such that it is approxi-

mated by Algorithm 2 using a dictionary� with � steps, gen-
erating��� � as in equation (6), and be
��� the largest angle
between any signal� � �

� and the closest atom in dictio-
nary �. We have that���� �� � �� 	 ��� �� � �

�� �
� , where

�� �
�
�	 ���	 ��� ���� �
���� � � for every	 � � � �

and	 � 
��� � 

� .

The following points regarding Algorithm 2 should be high-
lighted:

(i) Algorithm 2 performs a decomposition such that, for ev-
ery atom added, the distortion in the approximation of�

decreases by at least� � �. Thus, when the number of
passes� � �, ���� �� � 	, that is, algorithm 2 is con-
vergent.

(ii) The representation output by Algorithm 2 is given by just
a sequence of pairs of indexes���� ���,� � �� �� � � � � � .
This implies that there is no need for coefficients quanti-
zation as in the classical MP algorithm (see equation (2)
and the discussion that follows). In other words, it can
be said that Algorithm 2 performs both the decomposition
and quantization at the same time. Thus, it presents an ele-
gant solution to the coefficient quantization problem inher-
ent in the classical MP algorithm, described in section I.

(iii) The decomposition obtained can be organized in bit-planes
as in equation (5). This can be done by noting that, in
equation (6), the indexes�� for the values of� such that
�� � � correspond to the atoms comprising bit-plane�.

(iv) The number of atoms used in the decomposition can be set
arbitrarily and each atom corresponds to a pair���� ���.
This permits a precise rate control, since the decompo-
sition can be stopped when the bit-budget is exhausted.
This feature can be very useful in more sophisticated R-D
schemes.

III. I MPLEMENTATION OF THE VIDEO ENCODER

In this section the effectiveness of Algorithm 2 will be eval-
uated by employing it in the framework of Neff and Zakhor’s
Matching Pursuits video encoder [2]. Essentially, Algorithm
2 will replace the decomposition and quantization strategy em-
ployed in [2], using exactly the same dictionary�, as well as the
same atom encoding procedure. The indexes�� (see equation
(6)) are encoded in the same way as the atoms indexes in [2]. On
the other hand, instead of encoding the value of the inner product
�� (see equation (2)), the index�� of the bit plane correspond-
ing to the atom of index�� is encoded. An adaptive arithmetic
coder [8] is used for this purpose. Since we do not know at first
what is the maximum value that�� can assume, we had to per-
form a slight modification to the arithmetic encoder in [8]. The

initial number of possible indexes�� is set to two (��=1 and
��=2) plus an escape code. If we need to transmit��=3 we first
transmit the escape code to indicate an increase in the number of
symbols and then transmit the code for��=3. At this point the
possible symbols are��=1,2,3 plus an escape code. The same
process is repeated for each new value of�� that is out of the
current range. Also, when we start coding the next frame the
number of possible values of�� is the same as the one at the
end of the previous frame. It was verified experimentally that ,
as long as the initial number of symbols is small enough, is does
not influence significantly the performance of the algorithm.

Since Algorithm 2 assumes that the norm of the input sig-
nal is��� � �, we need to compute, for each video frame, the
largest norm of the macroblocks,���	. It is important to note
that, for each macroblock, as in [2], we search for the closest
atom by centering every atom in every pixel of the macroblock.
This implies that the atoms searched for in a macroblock� � in-
vade the neighboring macroblocks. Then, effectively, it is as
if the dimension of the signal we are decomposing is not the
one of macroblock��, but the dimension of�� plus the pix-
els of the neighboring macroblocks invaded by the atoms used
to decompose��. Referring to figure 1, since the luminance
macroblocks are�� � ��, the value of���	 is computed for a
region of����
��	������
��	� centered in the macroblock
(
��	�
��	 is the support of the atom having largest support).
In our case,
��	 � ��, and���	 is computed considering
�	 � �	 windows centered in every macroblock (see figure 1).
We also need to send the approximation scaling factor (�) at the
header of the video sequence. Note that since the use of Algo-
rithm 2 permits precise bit-rate control (see comment (iv) at the
end of section II), then the strategy used for bit-rate allocation
was to divide the bit-budget of the sequence equally among all
its frames. Clearly other more sophisticated rate control algo-
rithms could be used taking advantage of the precise rate control
that such decompositions may provide, as in [9].

IV. EXPERIMENTAL RESULTS

We have coded the sequences Container, Coast-guard, Hall-
monitor, Mother-and-daughter, Silent-voice and Foreman with
300 QCIF frames at 30 frames/s, sub-sampled in time by fac-
tors of 4 (rates under 20kbps) and 3 (other rates) to generate 7.5
frames/s and 10 frames/s, respectively. Coding was done only
on luminance component in bit-rates that vary in the range 10-
100kbps.

The value of� (see equation (6)) chosen at the beginning of
coding interferes with the number of vectors used to code each
frame. Smaller values of� lead to smaller values of�� but
also to a worse approximation in each pass; this leads to a larger
number of vectors in order to maintain a given distortion. Like-
wise, larger values of� lead to larger values of�� and to a
smaller number of vectors. We can see then that there is a trade-
off among the value of�, the number of vectors and the range
of values of��. Therefore, the value of� can potentially af-
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Fig. 1. Illustration of the area in which���� is computed.

fect the rate� distortion characteristics of the encoder. This
trade-off can be seen in figures 2 and 3. There, we show the
variation of the average number of bits spent for both specify-
ing the atoms indexes�� and coefficients�� (see equation (6))
against�. The straight lines represent these values for the MP
algorithm (	� and�� in equation (1)). The sequences used are
Mother and Coast for 24kbps and 64kbps, respectively. In this
figure, we can see that increasing�, the bits spent to code the
atoms indexes tend to decrease, while the bits spent to code the
coefficients�� tend to increase. In addition, we can note that
for values of� under 0.65, approximately, the MPGBP algo-
rithm spends less bits for encoding the�� than the MP algo-
rithm for encoding the projection��. However, the MPGBP
algorithm spends more bits for encoding the atoms indexes than
the MP algorithm. It was verified experimentally that this result
holds for all bit-rates or video sequences used. Indeed, in the
appendix, we have shown theoretically that the distortion tends
to decrease faster as� increases (see figure 9).

In figures 4 and 5 we can see the variation of the average
PSNR with� for rates 24kbps and 48kbps, respectively. We can
verify that the variation of� does not interfere significantly with
the results, except when this parameter is next to one or under
0.4, when there is a significant drop in performance. An� in
the range�	��� 	���� is a good choice. In our experiments, we
have used an� � 	��� for all cases. It is interesting to note
that despite the variation in the number of bits spent with the
atoms indexes�� and coefficients��, the average peak signal to
noise ratio (PSNR) of the sequences is approximately constant
for � � �	��� 	����.

Table I compares the PSNR of the original matching pursuits
video encoder (MP) [2] with our adaptation using generalized
bit-planes (MPGBP) for some rates and sequences of video. In
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Fig. 3. Average bits spent for��, ��, �� and�� against alpha for Coast
sequence for 64kbps.

this table, the first column shows the PSNR for MPGBP algo-
rithm while the second column shows PSNR for MP algorithm.
The third column shows the improvement of the MPGBP over
MP algorithm. We can see from this table that MPGBP is al-
ways better than the original matching pursuits algorithms [2]
for different bit-rates and video sequences.

Figures 6 and 7 show the variation of the average PSNR with
rate for both implementations of the matching pursuits encoders
for Mother and Silent sequences, respectively. We can see from
these figures that the use of the generalized bit-planes scheme
consistently improves the performance of the matching pursuits
encoder from [2] for all rates. In addition, this improvement
increases with the bit rate. Indeed, our results are comparable
to the best ones in the literature, that have been obtained using
sophisticated adaptive strategies [3]. The knee on the curves
around 20kbps is due to the increase of the frame rate from 7.5
fps to 10 fps.

V. CONCLUSIONS

In this paper we have proposed a novel algorithm for per-
forming matching pursuits decomposition. Instead of generat-
ing at its output a sequence of pairs comprising atoms indexes
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and corresponding coefficients, as in the classical MP algorithm,
it generates just a sequence of atoms indexes. These indexes
can be grouped in generalized bit-planes. The proposed algo-
rithm has the advantage of obviating the need for setting up
arbitrary trade-offs between number of atoms used and coeffi-
cients quantization. We have shown that the proposed algorithm
corresponds to a generalization of the usual decomposition on

TABLE I

COMPARISON, IN TERMS OFPSNR,BETWEEN THE TWO MATCHING

PURSUITS IMPLEMENTATIONS.

Seq + Rate MPGBP MP [2] MPGBP-MP

Container10 32.54 32.45 0.06
Mother10 33.42 33.35 0.07

Hall10 33.43 33.30 0.13
Container24 34.70 34.47 0.23
Mother24 36.39 36.18 0.21

Hall24 36.59 36.13 0.46
Silent24 32.77 32.73 0.04
Coast24 27.79 27.66 0.13

Container48 36.95 36.43 0.52
Mother48 39.21 38.45 0.76

Hall48 39.14 38.00 1.14
Silent48 36.35 35.90 0.45
Coast48 30.31 30.26 0.05

Container64 37.94 37.16 0.78
Mother64 40.47 39.34 1.13

Hall64 39.97 38.84 1.13
Silent64 37.85 37.30 0.55
Coast64 31.35 31.25 0.10

Mother96 42.27 41.02 1.25
Foreman96 35.54 35.35 0.19
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Fig. 7. Variation of the average PSNR with rate for Silent sequence.

a dictionary or basis followed by uniform scalar quantization.
Also, we have proved a theorem setting a bound for the dis-
tortion obtainable for a decomposition in generalized bit-planes
using a given number of atoms.

We have implemented a matching pursuits video encoder us-
ing the proposed algorithm replacing the classical matching pur-
suits decomposition and quantization. Our video encoder was
used with different kinds of sequences and for a large variety
of bit-rates, yielding consistent results. The results obtained
are very promising, leading to a significant improvement over
the classical video-MP algorithm [2]. It also provides a perfor-
mance comparable to the one obtained by the more sophisticated
algorithms as, for example, the one in [3]. The generalized bit-
plane decomposition obtained with this algorithm opens the pos-
sibility for more flexible implementations, as quad-tree based
encoders using generalized bit-planes.
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APPENDIX

Proof. We can represent the residual signal��� � in pass� as
(see figure 8)

���� ��
�
� ��������� � ���� 	 � �������� ��� ��� � (7)

where� is the angle between the residual������ and its closest
vector. Since we can assume to be using complete dictionaries,
it can be said that� � 
��� � 


� .
Since� � � then�� � � such that (see figure 8)

��
� � �������� ��� � � �� (8)

�
�� �

�

�

� ��� ��
���

�
�

�
�����

�

�

�

�

Fig. 8. Illustration of the signal approximation�.

Equation (8) can be reorganized as

� ��� � �
��
�

��������
� ��� � (9)

We choose to� to be��
�. In this case, the residual��� �

becomes, from equation (7),

���� ��
�
� ��������� � ���
��

�
	 � �������� ��
� ��� �

(10)
and consequently

�
���� ��

��������

��
� ��

�
��
�

��������

��
	�

��
�

��������
��� � (11)

From equations (9) and (11) we have that

�
���� ��

��������

��
� � � �� ���� � 	 �� ���� �

� �	
�
��	 ��

	
���� � � �� ��� (12)

The equality would occur for
��
�

��������
� � ��� �.

Since	 � � � � and
 ��� �
 � �, we have that the smallest
�� ��� value (see equation (12)) is obtained when�� �.

In figure 9 we plot the value of� � ��� against � for
	 � � � �.
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Fig. 9. Plot the value of�� ��� against�.

From equation (12), we have that the residual decreases its
magnitude by at least� ��� in each pass. Since� � 
���, and ,
for � � �	� ��, ���	 ��� � 	, then we have that

� ��� �
�
�	 ���	 ��� ���� �
 ���� � �� (13)

Thus, since��� � �, we can say that, after� passes,
���� �� � �

�� �
� .

QED


