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Abstract— We will present, in details, an algorithm for the Stabilized
Inverse Diffusion Equation (SIDE) technique introduced in [4]. The algo-
rithm will be evaluated in two different application areas of interest, which
are: signal detection and image segmentation. SIDEs are a family of semi-
discrete evolution equations which stably sharpen edges and suppress noise.
This characteristic makes SIDEs an efficient tool in noise reduction prob-
lems. This paper will focus on the detection of 1-D signals and on the seg-
mentation of ultrasound and mammography images. Results will be pre-
sented.

I. I NTRODUCTION

T
HE objective of this paper is to present an algorithm for the
implementation of SIDE technique introduced in [4], [5],

that is applicable to 1-D and 2-D signals. Pollak and Willsky’s
work presented SIDEs as a family of semi-discrete evolution
equations which stably sharpen edges and suppress noise. The
implementation of SIDEs naturally results in a recursive region
merging algorithm. We’ll use SIDE algorithm in the detection
of abrupt changes in 1-D signals, and in the segmentation of
mammography and ultrasound images.

Scale has recently emerged as an important characteristic in
signal and image analysis, and has played an increasingly impor-
tant role in the solutions to many new problems. Any technique
that incorporates a scale parameter - either directly in the com-
putation procedure, or implicitly as a part of the image model
- controls the smoothness of the estimate and/or sizes of the
segmented regions. SIDEs are motivated by the interest in us-
ing scale evolutions specified by partial differential equations
(PDE’s), and may be viewed as a conceptually limiting case of
Perona-Malik diffusions [5]. In this section we introduce the
concepts of the Stabilized Inverse Diffusion Equations.

A. SIDEs: The Definition

Pollak and Willsky described a convenient mechanical anal-
ogy for the visualization of the evolution equations, illustrated
in Figure 1.

Suppose thatu 2 <N is a one-dimensional (1-D) sequence,
and interpretu(t) = (u1(t); : : : ; uN(t))

T in (1) as a vector of
vertical positions of theN particles of massesM1; : : : ;MN ,
depicted in Figure 1. The particles are forced to move along
N vertical lines. Each particle is connected by springs to its
two neighbors (except the first and last particles, which are only
connected to one neighbor).
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The movement of the particles is made by the ”force function”
F (v) and it’s non-conservative,i.e., stops after a small period of
time�t and restarts with zero velocity.

_un =
1

mn

(F (un+1 � un)� F (un � un�1));

n = 1; 2; : : : ; N

(1)

with the conventionsu0 = u1 anduN+1 = uN imposed by the
absence of springs to the left of the first particle and to the right
of the last particle.mn is refereed to as ”the mass of thenth
particle”.

The type of force function of interest to us here is illustrated
in Figure 2. Because of the discontinuity at the origin of the
force function, there is a question of how one defines solutions
of (1) for such a force function. Indeed, if (1) evolves toward
a point of discontinuity of its RHS, the value of the RHS of
(1)apparently depends on the direction from which the point is
approached [becauseF (0+) 6= F (0�)], making further evolu-
tion nonunique. Therefore, in terms of our spring-mass model
of Figure 1, once the vertical positionsui andui+1 of two or
more neighboring particles becomes equal, the springs connect-
ing them are replaced by a rigid link. In other words, the parti-
cles are simply merged into a single particle which is twice as
heavy, yielding the following modification of(1):

_uni =
1

mni

(F (uni+1 � uni)� F (uni � uni�1))

uni = uni+1 = : : : = uni+mni
�1;

ondei = 1; : : : ; p

1 = n1 < n2 < : : : < np�1 < np � N;

ni+1 = ni +mni

(2)

The compound particle described by the vertical position
uni and massmni consists of mni unit-mass particles
uni ; uni+1; : : : ; uni+mni

�1 that have been merged.

Fig. 1. A spring-mass model.
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Choosing a SIDE force function best suited for a particular
application is an open question. The evolution of SIDEs au-
tomatically produces a multiscale segmentation of the original
signal.

II. CHANGE DETECTION PROBLEMS SOLVED BY SIDES

In the signal detection theory, the ”transmitter” and the ”re-
ceiver” know,a priori, the set of symbols and the waveform as-
sociated with each symbol. What the receiver does not know in
advance is which symbols have been transmitted during a given
interval. Since the received waveform is usually distorted and
masked by noise, the receiver will occasionally make errors in
determining which symbol was present in an observation inter-
val.

There are many applications in which we have to make a
choice or decision based on observations. In digital communica-
tion systems, for example, the receiver has to make a decision as
to which one ofM possible signals is actually present based on
noisy observations. In each case the solution involves making
a decision based on observations of data that are random vari-
ables. The theory behind the solutions to these problems have
been developed by statisticians and fall under the general area
of statistics known as statistical inference, decision theory, or
hypothesis testing.

In classical hypothesis testing, decisions are based on the like-
lihood function, whereas in the theoretical approach, thea pri-
ori probabilities and costs associated with various decisions will
also be included in the decision rule. The likelihood function
used in SIDE evolution is the expected edges of the received
signal.

In this section we use SIDE definition in order to build an
algorithm to solve edge detection or binary classification prob-
lems. In the case of a binary communication system, the receiver
knows that either a ”1” or ”0” is transmitted everyT seconds and
that a ”1” is represented by a positive pulse and a ”0” is repre-
sented by a negative pulse.

Given an observationu = (u1; : : : ; uN)
T , whereN = T

k

andk is the number of periods of the input signal (k = 7 in
this example), as the input signal corrupted by an additive noise.
The goal is to label each sample as coming from one of the two
classes,i.e. to produce a binary signalh whose entries are ze-
ros and ones. We call any such binary signalh a hypothesis.
The SIDE algorithm for signal detection, can be summarized as
follows:

i. Initially assume the finest segmentation: each sample is a sep-
arate region,i.e. mn = 1 for n = 1; : : : ; N ;
ii. Define the stopping criterion: number of level crossings�;

1

-1

-L

L

F(d)

d

Fig. 2. Force function for a stabilized inverse diffusion equation (F (v) = sgn(v)� v
L

,
for L > max(u0)).

iii. Evolve equation (2), withF (v) = sgn(v), until the values
in two or more neighboring regions become equal;
iv. Merge the neighboring regions whose values are equal;
v. Go to step iii until the number of edges is lower or equal�.

Note that the hypothesis is uniquely defined by the set of its
edges (�). This is the only information the receiver has to know
in advance, there is no need to estimate the probability density
function of the signal. In case of binary communication systems,
we know de duration of the symbols and so of the received sig-
nal. We can then estimate the numbers of zero crossings.

We first tested the algorithm on a unit step function corrupted
by additive white Gaussian noise whose standard deviation is
equal to the amplitude of the step, and which is depicted in Fig-
ure 3.

Fig. 3. (a)The original signal; (b)The resulting SIDE detection.

Note that the remaining edge in Figure 3(b) is located between
samples 80 and 81, which is quite close to the position of the
original edges (between samples 79 and 80).

Our second example, depicted in Figure 4, shows a binary
communication signal corrupted by additive noise, with ampli-
tude ten times higher than the original signal. Note that the am-
plitudes of the final signal (Figure 4(b)) are quite different from
those of the initial condition (Figure 4(a)). The stopping crite-
rion for the evolution is� = 6, i.e. when there are only seven
regions left. The detected signal (Figure 4(c)) is very close to
the original one (Figure 4(a)), showing that the correct detection
was made.
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Fig. 4. (a)The original (transmitted) signal; (b)The received signal; (c)The resulting SIDE
signal.
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III. I MAGE SEGMENTATION WITH STABILIZED INVERSE

DIFFUSION EQUATIONS

In the previous section we showed the SIDE algorithm used
in the detection of changes in 1-D signals. In this section we
will evaluate an SIDE algorithm in problems of segmentation of
images.

To segment an image means to partition the domain of its
definition into several regions in such a way that the image is
homogeneous within each region and changes abruptly among
regions [5]. Image segmentation is closely related to restoration,
that is, the problem of estimating an image based on its degraded
observation. The solution to one of these problems makes the
other simpler,i.e. segmentation is easier once a good estimate of
the image has been computed. It is therefore natural that many
segmentation algorithms are related to restoration techniques,
and in fact some methods combine the two, producing estimates
of both the edge locations and image intensity [7], [8].

In describing any restoration or segmentation technique, the
notion of scale is very important. SIDE technique incorporates
a scale parameter, directly in the computation procedure, which
controls the smoothness of the estimate and sizes of the seg-
mented regions.

Given an image or a set of images resulting from a medical
image procedure - such as ultrasound or mammography - it is
necessary to extract certain objects of interest. Mammography
images, for example, are used to detect a number of abnormali-
ties, the two main ones being calcifications and masses. On the
other hand, ultrasound images are used to detect cysts. However,
ultrasound does not have as good spatial resolution as mammog-
raphy.

In this section we present an SIDE-based image segmentation
algorithm, which can be used in both exams to help physicians to
locate abnormalities. The scale space produced by SIDE has the
advantage of grouping similar regions (tissues) and suppressing
noise produced by the measurement. The SIDE semi-discrete
scale space (i.e., continuous in scale, or time, and discrete in
space) presented in section I-A is used for 2-D signals. To ex-
tend the mechanical model of Figure 1 to images, we simply re-
place the sequence of vertical lines with aN -by-N square grid
of such lines. A particle at location(i; j) is connected by springs
to its four neighbors, except for the particles in the four corners,
and those on the boundary of the square.

The partial differential equation (PDE) evolution presented in
equation 2 automatically produces a multiscale segmentation of
the original signal. The same PDE can be used for 2-D images,
which is immediate upon re-writing equation 2:

_uni =
1

mni

X

nj2Ani

F (unj � uni); (3)

wheremni is again the mass of the compound particlen i (num-
ber of pixels in the regionni). Ani is the set of indices of all
neighbors ofni, i.e., of all the compound particles that are con-
nected toni by springs.

Just as in 1-D, two neighboring regionsn1 andn2 are merged
by replacing them with one regionn of massmn = mn1 +mn2

and a set of neighborsAn = An1 [ An2(n1; n2). Viewed as a
segmentation algorithm, this evolution can be summarized as:

Program 1 -Algorithm for 2-D signals.

The algorithm showed above applies SIDE theory in the re-
duction of noise in 2-D signals. The number of evolutions made
by the algorithm will determine the number of remaining re-
gions. In this paper we are interested in binary images, which
means that the algorithm will be evaluated until there are only
two regions left. The number of iteractions, the constantsK,
lambda and the force functionF will depend on the noise added
to the image. These constants play an important role in the con-
vergence of the images, and their determination is based on a
subjective analysis of images during evolution.

Figures 5 and 6 ilustrate the evolution process obtained in the
segmentation of ultrasound and mammography images.

(a) (b)

(c) (d)

Fig. 5. Evolution of SIDE equation in ultrasound images.(a)original image, (b) 1000
regions image, (c) 4 regions image and (d) two regions image.

We can observe that the number of iterations needed for con-
vergence varies from one image to another, as we can see in Fig-
ures 5 and 6. The number if iteractions needed to segment the
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ultrasound image is twice as big as the number needed for the
mammography image. One of the aspects that we can observe
is that during the evolution, different tissues are enhanced.

IV. CONCLUSIONS ANDFUTURE RESEARCH

In this paper we present two algorithms that implement the
SIDEs technique and demonstrate their successful application
to signals and images with very high levels of noise, as well as
to blurry signals. Our algorithms are based on a class of evolu-
tion equations for the processing of imagery and signals called
stabilized inverse Diffusion Equations or SIDEs. These evolu-
tions have their own unique qualitative characteristics that sug-
gest a good noise reduction algorithms. Methods for choosing
the force functionF need some more investigation in order to
stabilize regions in fewer steps. The algorithms presented can
be otptimized in merging regions.
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Fig. 6. SIDE evolution in a mammography image. (a)original image, (b) 500 regions
image, (c) 5 regions image and (d) two regions image.


