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Convolutive Non-Negative Matrix Factorization for
CQT Transform using Itakura-Saito Divergence

Fabio Louvatti do Carmo; Evandro Ottoni Teatini Salles

Abstract— This paper proposes a modification of the Non-
negative Matrix Factorization (NMF) in a single-channel audio
source separation problem. NMF is widely used in such problem
because of its easy implementation and parts-based separation
properties. However, the original NMF uses Short Time Fourier
Transform (STFT) as a spectral representation of the data, which
has matrix representation, and it does not support data at non-
regular grid, such as Constant-Q Transform (CQT). CQT has a
strong appeal in audio processing because it approximates the
human auditory system in a reasonably way. Besides to usage of
CQT as spectral representation, this paper presents a convolutive
NMF approach using Itakura-Saito divergence (ISD) to work
with irregularly-sampled data, here defined as NRCNMF-IS.
The scale invariance property of ISD is interesting for audio
applications. The NRCNMF-IS was tested and compared with
its matricial version. Utilizing performance metrics, the statistical
results show that the use of CQT as spectral representation yields
better results than the STFT representation.

Keywords— Non-negative Matrix Factorization, Monaural
separation, Blind source separation, Constant-Q Transform,
Itakura-Saito.

I. INTRODUCTION

The separation task of multiples sounds from monaural
audio is a hard problem and it has been widely approached on
literature. A commonly used method to such decomposition
is the Non-negative Matrix Factorization (NMF). The NMF
has gained popularity in [1] due to its sparse nature in
the decomposition process (part-based) and its simplicity in
implementation. NMF has been used in audio applications
as monaural speech separation [2], identification of auditory
objects with time-varying spectrum [3] and automatic music
transcription [4].

The NMF formulation in [5] defines that a matrix Xy« s €
R is approximated by the product of two matrices Wy x g €
RT and Hry s € RT, such that a cost function is minimized.
Such a cost function is built from a divergence measure
between X and WH. The most commonly used measures
are Frobenius norm, Kullback-Leibler (KL) divergence and
Itakura-Saito (IS) divergence.

The vast majority of the methods that use NMF, represents
the audio signals through the spectrogram builted from the
Short Time Fourier Transform (STFT). Such a representation
is linearly spaced in frequency, so it does not efficiently map
the frequencies corresponding to the musical notes. In contrast,
the Constant-Q Transform (CQT), originally introduced in [6],
describes a geometrical resolution in frequency. The CQT
is important in speech and music processing, because it is

Fabio Louvatti do Carmo; Evandro Ottoni Teatini Salles. Fed-
eral University of Espirito Santo (UFES), Vitoria-ES, Brazil, E-mails:
fabio.carmo @aluno.ufes.br, evandro@ele.ufes.br.

based on human perception of sound. In [7] it is presented a
very reliable invertible CQT approach based on non-stationary
Gabor frames (CQ-NSGT). However, the CQ-NSGT yields the
samples in a non-regular grid, and matrix representation is no
longer possible, making it impossible to use with classic NMF.
A reformulation of NMF has been introduced in [8] in order
to use it with irregularly-spaced samples, here called Non-
Regular NMF (NRNMF). Thereby, it is possible to use NMF
with CQ-NSGT for audio applications. The reformulation of
the traditional model basically consists of vectoring the matrix
Xnyxm € RT as xg w1 € RT and creating two other vectors
txx1 and fx 1 that contain the time and frequency positions
of each sample, respectively. The approximation Xxx; € R
is given by
R—1
X =
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o

=
where vixr € RT and gxyr € RT are the matrices to be
found, ® means element-wise product and R is the number
of parts to be factored. It is worth noting that now the values
in t and f can be real, and not more integers as in the matrix
case.

The models in [5] and [8] are related to the classic NMF.
However, such traditional approach is weak for audio tasks,
because it not considers the temporal information of signal. In
[3] and [9] was presented convolutive NMF models for ma-
trix representation, where the relationship between multiples
observations in close interval time is described by a spectral
bases sequence W, which corresponds to the coefficients in
H varying over time. In [10], it was presented a convolutive
version of [8] using CQ-NSGT as spectral representation for
blind source separation (BSS) application.

The algorithms presented in [8], [9] and [10] use the
KL divergence as cost function. It is known that the KL
divergence is a special case of S-divergence when § = 1.
In [11], it was shown that the factorization performed with
B > 0 relies more heavily on the largest data values and
less precision is to be expected in the estimation of the low-
power components. Audio spectra typically exhibit exponential
power decrease along frequency and commonly include low-
power transient components. In this respect, KL divergence is
not very appropriate for audio applications. In addition to the
usage of CQ-NSGT as spectral representation of the data, this
paper also proposes a modification in [10] using IS divergence
as cost function (NRCNMF-IS), whose expression is given by

X x
drs(z|z) = 7~ In 7~ 1. )

The IS divergence is a particular case of $-divergence when
B = 0 and it has interesting properties, such as the scale
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invariance, meaning that low-power components of X bear
the same relative importance as high-power ones. Therefore,
factorization with IS divergence are relevant to decomposition
of audio spectra and also has good perceptual properties of
the reconstructed signals.

This paper is organized as follows. The section II presents
the NMF algorithms for matrix-structured data and the pro-
posed algorithm for irregularly sampled data utilizing Itakura-
Saito as cost function. Section III shows the experimental
results, comparing the two algorithms presented in section II,
and also presents the methodology and the parameters used.
And section IV draws the conclusions.

II. NMF FOR SAMPLES ON A NON-REGULAR GRID

A. Classic and Convoltutive NMF

Using IS divergence as cost function, the classic NMF
results in the following iterative process

W1 ((WH)?X)

H+~HO WT(WH) 1
WH) 2X)HT
WHWQK(W;)_II;T, 3)

where ©® and L] are element-wise multiplication and division,

respectively. At each iteration, the matrices W and H are
normalized in order to obtain an unbiased estimate. The
normalization is performed as follows

Wi =N Yr=0,.,R—1
Zn:O W}n\f
N—-1
Mo by > Wi, Wr=0,.,R-1, (4)
n=0

where wi; corresponds to each column of W and hj, to
each row of H. The columns of W represent the spectral
patterns found by the algorithm, and the rows of H indicate the
position and intensity that these patterns are repeated along the
spectrum. This approach is weak for audio applications, since
such patterns have no temporal dependency between them.
Such temporal dependence is added to the generative model
as follows

;

t—

X = W,..H, 5)

~+
I
o

t—
where T is the length of each spectral sequence and [.] denotes

a column shift operator of ¢ steps to the right. With this new
generative model, the new multiplicative rules can be seen as
a set of T' NMF operations in (3) that are combined to the
end. Thereby, the algorithm needs to update 7'+ 1 matrices at

each iteration

e ©)

vt e [0,...,T —1].

At each iteration, all W, and H are updated, where H is
calculated as the average of their updates for each W;. Note
that for the case T = 1, the algorithm in (6) becomes (3).

B. Convolutive NMF for samples on non-regular grid

The algorithms cited in the previous subsection usually use
STFT for matricial representation of the spectrogram in X.
However, CQ-NSGT does not allow a matrix structure of the
samples, and to use CQ-NSGT as a spectral representation
along with NMF, it is necessary to vectorize the classic
algorithm. The vectorization of (6) yields
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where the matrices D; e Dy are calculated from the time and
frequency coordinates of the samples in x. These matrices
indicate the relative positions between all the samples. When
using CQ-NSGT as a spectral representation, the frequency
bins are geometrically spaced, i.e. it is given a minimum
frequency fmin and the subsequent frequencies are given by
fi = fmin - 2%, where B is the number of bins per octave.
Therefore, the frequency coordinates in f are predefined val-

ues, and then the matrix D can be calculated as follows

Vi = )

[ =1G)
Df“’”‘{o, £ # £0)

However, the time coordinates are not regular due to the Q-
constant characteristic. It is known that () is the quality of the
filter and it is given by the ratio of the central frequency of the

®)
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filter to its bandwidth. Thereby, the window sizes are different
for each frequency bin. The Figure 1 shows an example of how
the samples are positioned in time and frequency plane.
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Fig. 1. Example of non-regular grid in the time-frequency plane for the
CQT.

Thus, the vector t has a high chance of being formed by
single elements, and if the matrix D, is calculated as in (8),
D, will be a null matrix. To mitigate this problem, in [8] it is
calculated the matrix D, using a Gaussian kernel.

—[t(2) — t(j)|2>

Dt(Za]) = €xp < 0_2
t

€))

However, in the calculation of D; in (9), a single value
of variance is used. If the chosen variance is too small, the
algorithm will not learn any structure in the spectrogram,
whereas the case of large variance, spectral blurring will occur.
To overcome this problem, the calculation of D, is modified
and it uses a variance that varies with each bin of frequency.
Then, the variance in (9) becomes

2 _dl%in

Ut,bin - ’ 0< Y < ]-v (10)

In~

where dy;, is the distance between neighboring samples for
each frequency bin, and ~ is the value of the Gaussian kernel
evaluated in the neighboring sample. Figure 2 illustrates the
samples and the Gaussian kernels with the variances adapted

to each bin of frequency.
i— —t

The shift operators [-] and [] in (7) are performed dif-
ferently from the matrix version in (6). Figure 1 shows an
example of an irregular time-frequency grid, and it may be
noted that time-shifting must be conducted so that more high
frequency samples are shifted than the low ones, i.e. for a shift
of one sample at low frequency, it is necessary to shift several
at high frequency so that the spectrogram does not deform.
Figure 3 exemplifies the shift operator in irregularly-spaced
samples.
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Fig. 2. Example of Gaussian kernel with variance adapting to each frequency
bin, calculated with v = 0.01.
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Fig. 3. Example of shift of 0.2 seconds in a CQ-NSGT spectrogram.

III. EXPERIMENTAL RESULTS
A. Musical Application

The NRCNMEF-IS is tested and compared to its matricial
version, Convolutive Non-negative Matrix Factorization, based
on IS-divergence too (CNMF-IS). The NRCNMF-IS uses CQ-
NSGT as spectral representation, while CNMF-IS uses the
STFT. The task is blind source separation, where the sources
are estimated in an unsupervised mode. All the algorithm were
developed using the Python programming language.

The audio to be factored is a sequence of notes played on a
piano, as the Figure 4 shows. The piano sound was generated
from a MIDI file and it was synthesized utilizing the Yamaha
CS5 Grand Piano SoundFont, with 16kHz sampling rate. The
expected result is to separate each note of the piece played.

ANV [ [

) | |

Fig. 4. Sheet music of the audio played by the piano.

B. Performance Evaluation

In this work we use as performance evaluation the mea-
sures presented in [12]. The factorization quality is measured
in terms of Source-to-Distortion Ratio (SDR), Source-to-
Interference Ratio (SIR) and Source-to-Artifact Ratio (SAR),
which calculate the amount of distortion, interference, and
artifacts, respectively. These three measures are standard met-
rics for blind source separation and they are calculated with a
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toolbox called BSS Eval'. It is important to note that higher

values of SDR, SAR and SIR mean better estimates of the
sources.

C. Results and Discussion

Original

I presents the metrics evaluated in an execution of the CNMF-
IS. Figures 5 and 6 show the time signals and spectrograms
of the execution evaluated in Table I.

Original
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Fig. 5.

Time signals resulting from an execution of CNMR-IS.

Part 3 (G)

Fig. 6. Spectrograms resulting from an execution of CNMR-IS.

The STFT was calculated using frame size of 512 samples
and hop size 128. The time-shifting in CNMF-IS was tested
with different lengths in order to find the most suitable. The
CNMF-IS algorithm was initialized with random values in all
runs. After tests, the best value of time shifting was 50, which
is approximately the duration of each note played. The Table

http://bass-db.gforge.inria.fr/bss_eval/

Fig. 7.

Time signals resulting from an execution of NRCNMR-IS.

Fig. 8. Interpoled spectrograms resulting from an execution of NRCNMR-IS.

The CQ-NSGT was performed using minimum frequency
Jmin = 110Hz (Al), maximum frequency fmax =
7902.132Hz (B7) and bins per octave bpo = 48 (quarter-
tones equivalent). Similarly done with CNMF-IS, multiples
time-shifting was tested and the best value was 0.3 sec,
which is also approximately the duration of each note played.
The NRCNMF-IS algorithm was also initialized with random
values in all runs. In addition, NRCNMF-IS has one more
parameter and it was also tested. It is the parameter  in (10),
and the chosen value was 10~3. The choice of 7 is less critical
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than the time-shifting value. The time-shifting value is more
sensitive because it defines the length of the spectral bases
sequence V, which will be repeated according to G along
the estimated spectrogram. The Table II presents the metrics
evaluated in an execution of the NRCNMF-IS. Figures 7 and
8 show the time signals and spectrograms of the execution
evaluated in Table II. As previously mentioned, the CQ-NSGT
spectrogram is sampled in an irregular grid as in the Figure
1, however the spectrograms presented in the Figures 7 and 8
were interpolated for better visualization.

The experiments of CNMF-IS and NRCNMF-IS were re-
peated 53 times and Figure 9 shows the statistics of all
executions of both algorithms in terms of mean and standard
deviation. The audio results of this article and others results
are in the website https://sites.google.com/site/
nrcnmfis/

Tables I and II show one execution time results of CNMF-IS
and NRCNMF-IS respectivelly. In these two specific examples,
we can see that CNMF-IS obtained the best results for Source
1 (C), while NRCNMEF-IS is better in the others. However, it
is important to note that despite this, the result of NRCNMF-
IS is smoother in relation to human perception, being a more
comfortable sound (It is possible to listen them from the above
mentioned website). Although the values of the SAR metric
are close in both cases, the artifacts in CNMF-IS are noisier
than those present in NRCNMF-IS.

TABLE I
RESULTS OF AN EXECUTION OF THE CNMF-IS ALGORITHM.

[ [ sbR [ SIR | SAR |
Source 1 (C) 13.703 | 24.800 | 14.069
Source 2 (E) 8.072 [ 16.275 | 8.885
Source 3 (G) 8.582 [ 15.518 | 9.685

TABLE 1T

RESULTS OF AN EXECUTION OF THE NRCNMF-IS ALGORITHM.

[ [ sbR [ SIR | SAR |
Source 1 (C) 12.037 22.987 12.422
Source 2 (E) 9.409 19.698 9.883
Source 3 (G) 9.546 19.558 10.050
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Fig. 9. Performance evaluation of CNMF-IS and NRCNMF-IS using BSS
Eval. Statistics in terms of mean and standard deviation.

Figure 9 shows the mean and standard deviation of SDR,

SIR and SAR metrics, after 53 experiment repetitions, for
CNMF-IS and NRCNMF-IS. The NRCNMF-IS results were
better in terms of SDR and SAR. With high SAR values, the
audios obtained by NRCNMF-IS contain few artifacts, which
explains why the sound is more pleasant. As for the SIR, which
measures the interference between the sources, NRCNMF-IS
obtained little variability in the results, whereas CNMF-IS
sometimes achieved good results and sometimes bad ones. In
all metrics, NRCNMF-IS results are less dispersed, i.e. they
do not change much in different executions. The NRCNMF-
IS results are more consistent since they have small values of
standard deviation.

IV. CONCLUSIONS

In this paper we presented a Convolutive Non-negative Ma-
trix Factorization approach for irregularly sampled data, using
the Itakura-Saito divergence as cost function and Constant-
Q Transform as spectral representation of the audio. To the
didactic audio example used in this article it was observed
that although the CQ-NSGT has an irregularly spaced samples
in the time-frequency plane, it is possible to use such grid
with the NMF algorithm and to obtain better results than the
version using STFT. Future studies might explore a super-
vised approach in order to develop applications for automatic
transcription of scores, for example. And, once NMF suffers
from both a high computational cost and an intensive memory
usage, it is interesting to develop an iterative online approach
to mitigate both problems.
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