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Abstract—An optimization procedure for cosine-modulated filter banks
(CMFB) using the frequency-response masking approach is proposed. In
the given method, we perform minimization of the maximum attenua-
tion level in the filter’s stopband, subject to intersymbol interference (ISI)
and intercarrier interference (ICI) constraints. For optimization, a quasi-
Newton algorithm with line search is used, and we propose a simplified
analytical expressions to impose the interference constraints. The result is
lower levels of ISI and ICI for a pre-determined filter order, or reduced
filter complexity for given levels of interferences.

I. I NTRODUCTION

Cosine-modulated filter banks (CMFBs) are commonly used
in practice due to two main features [6], [1]: First, their realiza-
tion relies only on the design of a single prototype filter; Second,
they have computationally efficient implementations based on
fast algorithms for the discrete cosine transform (DCT). For very
demanding applications where maximum selectivity is required,
the prototype filter for the CMFB tends to present very high or-
der, thus increasing the computational complexity of the overall
structure. A possible design procedure that avoids this problem
is to use the FRM approach [5] for designing the CMFB pro-
totype filter. This technique is known to produce sharp linear-
phase FIR filters with reduced number of coefficients, resulting
in the so-called FRM-CMFB structure [3].

This paper presents an optimization procedure of the FRM-
CMFB prototype filter aiming at the reduction of the stopband
maximum magnitude, with constraints on the intersymbol in-
terference (ISI) and intercarrier interference (ICI) of the over-
all structure. It is then verified that the reduced number of co-
efficients required by the FRM approach not only generates a
more efficient structure in terms of computational complexity,
but it also leads to a simpler and faster optimization problem.
The optimization procedure is based on variations of sequen-
tial quadratic programming, using a constrained quasi-Newton
method with line search. A simplified analytical derivation of
the interference constraints is given, which greatly speeds up the
optimization procedure. The results include lower levels of ISI
and ICI for a fixed filter order, or reduced filter bank complexity
for given levels interferences.

The remaining of the paper is organized as follows: In Sec-
tion 2, descriptions of the CMFB structure and the transmulti-
plexer (TMUX) configuration are given. In Section 3, a brief
explanation of the FRM approach for designing low-complexity
FIR filters is provided. In Section 4, the FRM-CMFB imple-
mentation is then presented as a computationally efficient alter-
native to design highly selective filter banks. In Section 5, the
optimization procedure for the FRM-CMFB prototype filter is
presented with emphasis given on a simplified analytical deriva-
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tion for the interference constraints. Then, Section 6 includes
some design examples, showing improved results achieved with
the optimized FRM-CMFB structure.

II. T HE CMFB AND TMUX SYSTEMS

CMFBs are easy-to-implement structures based on a single
prototype filter, whose modulated versions will form the analy-
sis and synthesis subfilters of the complete bank [7]. The modu-
lation operation is implemented in an efficient manner by using
fast algorithms for the DCT. Usually, the prototype filter forM -
band filter bank is specified by its 3 dB attenuation point and the
stopband edge at frequencies
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respectively, where� is the so-called roll-off factor.
Assuming that the prototype filter has an impulse response

hp(n) of orderNp, its transfer function is expressed as

Hp(z) =

NpX
n=0

hp(n)z
�n (2)

The impulse response of the analysis and synthesis subfilters are
then described by

hm(n) = hp(n)cm;n (3)

fm(n) = hp(n)�cm;n (4)

for m = 0; 1; : : : ; (M � 1) andn = 0; 1; : : : ; Np, where
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If the prototype filter has(Np+1) = 2KM coefficients, then it
can be decomposed into2M polyphase components

Hp(z) =

2M�1X
j=0

z�jEj(z
2M ) (7)

with Ej(z), for j = 0; 1; : : : ; (2M � 1), given by

Ej(z) =

K�1X
k=0

hp(2kM + j)z�k (8)

Therefore, using the fact thatcm;(n+2kM) = (�1)kcm;n, the
analysis filter can be written as

Hm(z) =

2M�1X
j=0

cm;jz
�jEj(�z

2M ) (9)
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With this polyphase decomposition, it can be shown that all fil-
tering operations can be performed using sparse matrix multipli-
cations involving an identity matrix, a reversed identity matrix,
and a DCT-IV operation, leading to a reduced number of opera-
tions per output sample [7].

Figure 1 shows the block diagram of the filter bank described
above, whose input-output relation is described by

Ŷ (z) =
1

M
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j2�i
M )

#
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The first term in equation (10),T0(z), is the direct transfer func-
tion and must be the unique term in an alias-free design, which
includes the perfect reconstruction (PR) filter bank, as a par-
ticular case. The second term, involving all otherT i(z), is the
aliasing transfer function, which quantifies the influences in a
given band from all other bands. These terms are expressed by

T0(z) =

M�1X
m=0

Fm(z)Hm(z) (11)

Ti(z) =

M�1X
m=0

Fm(z)Hm(ze
�j2�i
M ) (12)
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Fig. 1. M -channel maximally decimated filter bank.

The maximally decimatedM -channel TMUX system is a fil-
ter bank where the analysis and synthesis blocks are switched,
in order to form a system withM input/output channels, as de-
picted in Figure 2 [7]. This structure interpolates and filter each
input signal, adding the resulting signals on each branch to form
a single signal for transmission over a given channelC. At the
receiver, the signal is then split back intoM -channels to gener-
ate the desiredM outputs. The design problem of such system
can be simplified by assuming that the channel response is ideal
(C � 1), or a pure delay. Then, in the PR case, each output sig-
nal is identical to its equivalent input, whereas in the nearly-PR
(NPR), a small interference among the sub-channels is present.
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Fig. 2. M -channel maximally decimated TMUX system.

The general relation that describes the transfer functions of
the TMUX system is

x̂(zM ) =
1

M
T(zM)x(zM) (13)

where
x̂(z) = [X̂0(z) X̂1(z) : : : X̂M�1(z)]

T (14)

x(z) = [X0(z)X1(z) : : : XM�1(z)]
T (15)
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for a; b = 0; 1; : : : ; (M � 1). The matrixT(zM) is the so-
called transfer matrix whose elements,[T(zM)]ab, represent the
transfer function between the interpolated inputa and the deci-
mated outputb. Thus, the main diagonal entries of this matrix,
[T(zM)]aa represent the transfer functions of each channel, and
the other terms give the crosstalk between two different chan-
nels. In the NPR case, no restrictions apply to the transfer ma-
trix, whereas in the PR case, the crosstalk terms must be zero
and the diagonal terms become simple delays [1].

In a TMUX system, one would be interested in estimating the
total ISI and ICI figures of merit which are given by [1]:
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a
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2

9=
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whereÆ(n) is the ideal impulse,ta(n) is the impulse response
for the ath channel, and the term[T(ej!)]ab is the crosstalk
between theath andbth channels, whose expression is given by
equation (16).

III. T HE FRM APPROACH

The basic principle behind the FRM approach consists of the
usage of a complementary pair of interpolated linear-phase FIR
filters. The base filter,Hb(z), and its complementary version,
Hbc(z) are interpolated by a factor ofL, to form sharp tran-
sition bands, at the cost of introducing multiple passbands on
each frequency response. These repetitive passbands are then
filtered out by the so-called positive and negative masking fil-
ters,Gm(z) andGmc

(z) respectively, and added together to
compose the overall desired filter,Hf (z). This whole procedure
is illustrated in Figure 3. In practice,L is chosen in a heuris-
tic way such that the total number of coefficients of the overall
FRM filter is minimized. The subfilters can still be optimized
depending on the application, as described in [4], [2].

IV. T HE FRM-CMFB STRUCTURE

From the analysis of the FRM and the CMFB schemes, an
efficient FRM-CMFB joint structure can be derived if the inter-
polator factorL for the FRM filter can be written as [3]

L = 2KaM +
M

Kb

(19)
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Fig. 3. FRM structure: The interpolated complementary pair of filters and
the respective masking filters work together to produce the desired frequency
response.

with Ka � 0 andKb > 0 being integer numbers. In such
case, using solely the upper branch on the FRM scheme, the
mth analysis filter can be written as

Hm(z) =

NbX
i=0

�
hb(i)z

�Li

NmX
n=0

cm;[n+Li]g1(n)z
�n

�
(20)

whereNm is the order andg1(n) are the coefficients of the
masking filter. Notice that for the general FRM structure, a sim-
ilar description should be obtained for the lower branch, and
the results for both branches added together. Hence, from equa-
tion (20), by usingQ = 2Kb polyphase components for the base
filter, with i = kQ + q and(Nb + 1) = QKc, we have, after
some manipulations, that
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By writing the modified polyphase components of the interpo-
lated base filter

H 0

b1q(z) =

Kc�1X
k=0

(�1)Kaqhb(kQ+ q)z�k (22)

for q = 0; 1; : : : ; (Q � 1), and by using the masking filter
polyphase component

E0j(z) =
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for j = 0; 1; : : : ; (2M � 1), equation (21) becomes
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This relation leads to the structure depicted in Figure 4, where
the value ofK is equivalent to the CMFB case (see equa-
tion (8)).

V. OPTIMIZED FRM-CMFB

Standard optimization goals for the CMFB prototype filter are
to minimize the objective functions

E2 =

Z �

!r

jHp(e
j!)j2d! (25)

E1 = max
!2[!r;�]

jHp(e
j!)j (26)

which correspond to the total energy and the maximum magni-
tude value in the filter’s stopband, respectively, with!r being
the stopband edge frequency. In practice, to control the aliasing
distortion and the overall direct transfer of the filter bank, the
following constraints are introduced

1� Æ1 � jT0(e
j!)j � 1 + Æ1 (27)

jTi(e
j!)j � Æ2 (28)

for i = 1; 2; : : : ; (M � 1) and! =2 [0; �].

In the FRM-CMFB structure, the prototype filterHp(z) is as
given in Figure 3, and the approximation problem resides on
finding a base filter, a positive masking filter (upper branch),
and a negative masking filter (lower branch) that optimizeE 2 or
E1 subject to the constraints given by equations (27) and (28).
In this work, for the optimization we used a quasi-Newton
algorithm with line search implemented with the command
fmincon in MATLAB R
 [8]. The gradient vector was de-
termined analytically to reduce computational burden during
optimization procedure. The functionsT0(z) and Ti(z), for
i = 1; 2; : : : ; (M � 1), required to impose the desired con-
straints, have extremely high computational complexity. Some
simplifications, however, cansignificantly simplify the problem
of evaluating these constraints, as described below.

In thez domain, equations (3) and (4) become [7]
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for m = 0; 1; : : : ; (M � 1), where

�m = e
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whereNp is the prototype filter order. Using these relations in
equation (11), we get
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since(�m2 + ��m
2) = 0 and�m��m = 1, for all m.
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Fig. 4. CMFB structure using FRM for the general case ofL = 2KaM +
M
Kb
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UsingHp(z) as defined in equation (2), we obtain
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where the coefficientsa(n) result from the convolution ofhp(n)
with itself, that is

Zfhp(n) � hp(n)g =

2Np�1X
n=0

a(n)z�n (34)

and
(n) is defined as


(n) =

�
2M(�1)c; for (Np � n) = 2Mc; c integer

0; otherwise
(35)

Similarly, all functionsTi(z) can be evaluated using this sim-
plification, by modulating one of the terms of the convolution in
equation (34), as follows:

Ti(z) = Z
n�

e
j2�in
M hp(n) � hp(n)

�

(n)

o
(36)

for i = 1; 2; : : : ; (M � 1). Due to the symmetry in the mod-
ulation function,Ti(z) = TM�i(z). Hence, one may evaluate
functionsTi(z) only for i = 1; 2; : : : ; bM=2c, where the opera-
tor bxc denotes the integer part ofx.

VI. D ESIGN EXAMPLES

A quasi-Newton algorithm with line search was applied on
both direct-form (standard equiripple filter) and FRM realiza-
tions of the CMFB prototype filter aiming to achieve improved
performances with respect toE1 given in equation (26). The
prototype filters were used on a TMUX system, and the param-
eters of interest of this structure, namely passband ripple,Æ1,
aliasing interference,Æ2, minimum stopband attenuation,Ar, in-
tersymbol interference (ISI), and intercarrier interference (ICI),
were measured in each case.

Example 1: The example compares the realization of a
CMFB with M = 8 bands and� = 1, based on both direct
and FRM implementations. The overall order of the prototype
filters in both cases was set toNp = 2KM � 1 = 95, result-
ing in a factor ofK = 6 for the polyphase decomposition. The
direct-form realization was optimized in [1], and its final char-
acteristics are included in Table I. The FRM structure was de-
veloped with an interpolation factorL = 4, thus allowing one to
discard the lower branch of the FRM diagram. The orders of the
base and positive masking filters wereNb = 18 andNm = 23,
respectively, yielding an overall order ofNp = LNb+Nm = 95

for the FRM filter.
Table I summarizes the results achieved by the optimization

of the CMFB prototype filter. The magnitude responses of both
the optimized FRM prototype filter and the complete FRM-
CMFB are presented in Figures 5 and 6, respectively.

TABLE I

FIGURES OF MERIT FOR THE OPTIMIZED DIRECT-FORM AND FRM

PROTOTYPE FILTERS INEXAMPLE 1.

Figures of Merit Direct Form FRM
# coefficients 48 22

Æ1 0.001 0.00087
Æ2 (dB) -83.6 -88.2
Ar (dB) -74.0 -77.4
ISI (dB) -62.0 -63.1
ICI (dB) -80.4 -82.0
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Fig. 5. Magnitude response of optimized FRM prototype filter in Example 1.
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Fig. 6. Magnitude response of optimized FRM-CMFB in Example 1.

Example 2: The example is based on a filter bank with
M = 1024 and� = 0:1. The desired stopband attenuation
isAr = �60dB. These characteristics lead to a prototype filter
that is unfeasible to design using the direct-form realization with
standard approximation routines. So, in this exanple, we com-
pare the optimized FRM-CMFB with its non-optimized version.
In both cases, the FRM prototype filter was characterized by
Nb = 234, L = 384, andNm = 1653, yielding an overall filter
orderNp = 91509 and a total ofN = 945 distinct coefficients
to be optimized. Table II shows the results of this optimization
process.

TABLE II

FIGURES OF MERIT FOR THE STANDARD AND OPTIMIZEDFRM PROTOTYPE

FILTERS IN EXAMPLE 2.

Figures of Merit FRM Optimized FRM
# coefficients 945 945

Æ1 0.004 0.004
Æ2 (dB) -60.6 -64.4
Ar (dB) -63.8 -67.6
ISI (dB) -123.2 -126.4
ICI (dB) -121.2 -124.9

Figure 7 shows the optimized prototype filter in a reduced
grid of frequencies (a tenth of the original) for better visualiza-
tion, whereas Figure 8 depicts 32 out of the 1024 bands of the
optimized FRM-CMFB in this example.

VII. C ONCLUSIONS

A new design procedure for optimizing the prototype filter of
a cosine-modulated filter bank (CMFB) was presented. The new
method is based on the usage of a prototype filter designed with
the frequency-response masking (FRM) approach, thus consti-
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Fig. 7. Magnitude response of optimized FRM prototype filter in Example 2.
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Fig. 8. Partial magnitude response (32 bands out of 1024) of optimized FRM-
CMFB in Example 2.

tuting the so-called FRM-CMFB structure. A quasi-Newton
method with line search is used to perform minimization of the
maximum value of the magnitude response within the filter’s
stopband. Other objective functions, such as filter’s total stop-
band energy, may be considered in a similar fashion. Constraints
related to intersymbol and intercarrier interferences are consid-
ered, in an extremely simplified manner, in a transmultiplexer
configuration. The result is a numerically robust optimization
procedure that yields very efficient filter banks with respect to
several figures of merit, including the number of coefficients
capitalized by the FRM-CMFB structure.
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