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Abstract - The Q-GA (modified genetic algorithm) has been proposed
to design phase equalizers by using the symmetry error criterion of
the impulse response. In this approach, the search space is
partitioned into subspaces in which a small population evolves,
regarding a reduced number of generations. This approach presents
a considerable computational complexity gain, as compared with the
use of a conventional GA. In this paper, we assess such an algorithm
for performance in equalizer design of low-pass filters.

I. INTRODUCTION

The symmetry error of the impulse response, introduced in [1],
has been proposed successfully for phase equalization. This
approach has presented itself as a very good alternative to the
ones that use group and phase delay functions [2]. Moreover, for
cases of baseband signal (e.g. PAM, PCM) processing [3], the
impulse response symmetry error criterion has shown to be more
efficient than other criteria presented in the open literature. In
addition, by using such a criterion, one obtains a lower order for
the equalizer, as compared with other procedures.
On the other hand, independently of the approach used, generally
the equalization algorithms make use of optimization techniques
for determining the equalizer coefficients. Due to simplicity and
robustness, the DownHill Simplex Method (DHSM) [1-2,4-6]
has been largely used for solving optimization questions in phase
equalizer designs. In spite of its robustness, its performance is
much dependent on the starting estimates, leading in some cases
to local minima. This has been verified in several cases, when
used for equalizing other different types of approximation
functions [1-2]. For the impulse response symmetry error
criterion, the performance surface presents a multimodal
behavior, being a convex function just for a region around the
optimal point, as depicted in Fig. 1. In this figure the ( , )x y
values represent the 2nd–order equalizer coefficients. Thus, an
efficient and robust algorithm is necessary to overcome such
difficulties. Based on the principles of the conventional genetic
algorithms (GA), a modified genetic algorithm (Q-GA) to design
phase equalizers, using the impulse response symmetry error
criterion, has been proposed in [7]. Genetic algorithms have
become a powerful and robust tool for solving complex
optimization problems [8]. On the other hand, genetic algorithms
present a large computational effort, as carried out in their
conventional formulation. This is mainly due to the initial
diversity inherent to these algorithms.
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Thus, to overcome this drawback, the Q-GA approach becomes
an alternative strategy for improving the search process. This is
accomplished by systematic division of the search space into
subspaces, in which a small population evolves, regarding a
reduced number of generations. Through a mechanism of
competition between the subspaces, one obtains (with a reduced
number of evaluations of the objective function) the convergence
region. Through the examples of phase equalizer designs, for
low-pass filters, the Q-GA approach is assessed and compared
with the one based on the conventional GA for performance.

Fig. 1. Detail of the performance surface of the impulse response
symmetry error criterion for a low-pass filter equalization.

II. MODIFIED GENETIC ALGORITHM

The determination of the convergence region or feasible region
(in which the optimal solution is contained) is the main obstacle
for the search algorithms, when one does not have the
knowledge of the performance surface. Another difficulty found
is the possibility of occurring local minima (usual for objective
functions in phase equalizer design), which give rise to
stationary points, making it difficult to use algorithms based on
derivatives. Thus, an efficient procedure within a given search
space must provide the convergence region, overcome the local
minima and lead to a better possible solution. GA represent a
good alternative to carry out this task. Although, they are an
efficient optimization and search tool, their performance is
strongly dependent on the initial diversity. Thus, a great number
of individuals should evolve in a given number of generations.
Such a characteristic leads to a large computational effort,
rendering the algorithm less competitive as compared with other
search procedures. Through the Q-GA approach, we have an
algorithm more adequate to solve the optimization problems in
phase equalizer design. This approach is unlike the one proposed
in [8], in which competition is stimulated among several
populations within the same region.



A. Segmentation Process and Competition

In the Q-GA approach, the segmentation process is based on the
quadtree decomposition [9] along with a search procedure,
which is performed within each subspace. First, the search space
limits are determined. This determination is somewhat heuristic
and it is based on the designer’s expertise. Figure 2 shows a
limited search space, which is divided into quadrants
(subspaces), named (I), (II), (III) and (IV). In this same figure,
the successive partitions of the subspaces are also illustrated,
which are denoted by (1), (2), (3) and (4). Such a systematic
division denotes the evolution of the quadtree structure [8],
whose main characteristic is the search of the homogeneity of a
target parameter under inspection. In this case, the optimal point
is located within the quadrant (I) of the first partition (1). Thus,
the search algorithm must be capable of selecting the quadrant
(I) as the winner space for the next step. This process is repeated
until a stopping criterion is reached.

B. Computational Complexity Analysis

To obtain an adequate solution within the whole search space via
a conventional GA a great deal of individuals ( )Ni  is needed,
evolving for a large number of generations ( )Ng . By
considering the GA a stochastic process, Â  realizations are
needed for assessing its performance. Then, the complexity of
this algorithm is ( )Ni NgÂ´ ´  evaluations of the objective
function. In the Q-GA approach, we have used a small number
of individuals by quadrant ( )ni , evolving along a reduced
number of generations ( )ng . To find the convergence region,
ne  successive partitions are made on the search subspaces.
Thus, we obtain ( 4 )ne ni ng´ ´ ´  evaluations of the objective
function, which is less than the one required by a conventional
GA.
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Fig. 2. Q-GA search process.

C. Criterion for Determining the Winner Subspace

In the quadtree decomposition, the search by homogeneity is the
principal aim of the process. It can be represented by the
variance of the parameter under investigation. In the Q-GA
approach, we have used the homogeneity criterion to explore the
performance surface, which is obtained from the impulse
response symmetry error function [1].

In the GA, through the fitness function, one can assess the
performance of the optimization procedure such that we can
distinguish the regions that present a high variance
(non-homogeneous regions) of the ones that exhibit a low
variance (homogeneous regions).
In the studied cases, since the convergence region is found, we
have verified that the variance of the parameter under
investigation tends to a minimum. On the other hand, the mean
of this parameter tends to a maximum. Thus, through the
evolution of the better individual, which is based on the
maximum, mean and variance of the fitness function, for a given
partition level ( )j  in each quadrant ( 1, ,4)Q = K , one can
extract the following parameter sets:

· Maximum fitness:
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· Variance of the normalized fitness:
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where ( )ih × , for 1,2, ,i g= K , is the fitness evolution of the best

individual and g  is the generation number. The winner
quadrant, for a given partition level ( )j  in each quadrant
( 1, ,4)Q = K , is determined by a set of selection criteria ( ( ))c × ,
defined as follows:
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In the selection criterion (5c), the factor 1/j  was introduced
for weighting the variance of the normalized fitness. The aim of
this factor is to reduce the variance weight in the quadrant choice
while the process progresses to the convergence region.
The selection criterion, ( , )Qc j , for a given partition level ( )j

in each quadrant ( 1, ,4)Q = K , is then defined as the normalized
sum of the sets given by (5), as follows:
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III. IMPULSE RESPONSE SYMMETRY ERROR

In [1], the phase equalization approach based on the impulse
response symmetry error is discussed. The error function is
defined as
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( )h t  is the impulse response; L  is the length of the sampled
impulse response symmetrically distributed around a reference
value 0T ; 0T  is the time instant, characterizing the maximal

point of ( )h t ; tD  is the sampling period defined by 0 /T L ; and

k  denotes the kth-iteration.
The equalization procedure considers that the whole system is
composed of the original filter and equalizer connected in
cascade. In this approach, only the equalizer order is modified.
The cost function of the optimization process in the kth-iteration
is the variance of the error function defined as
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where ( )ke  denotes the mean value of the symmetry error.

IV. RESULTS

The Q-GA approach was applied to the following phase
equalizer designs: Chebyshev and elliptic low-pass filters, both
of 8th-order. The features of these filters are: passband distortion

max 0.5dBA = , and selectivity factor / 2.0s pw w = , for the

elliptic filter. Figure 3 illustrates the normalized impulse
responses for the Chebyshev and elliptic filters without
equalization. The variances of the symmetry error 2( )hes  are

410.94 10-
´  and 413.45 10-

´ , respectively.

0 10 20 30 40 50 60 70 80
-0.5

0

0.5

1

(a)

0 10 20 30 40 50 60 70 80
-0.5

0

0.5

1

t [s]

(b)

 h(t)

Fig. 3. Normalized impulse responses. (a) Chebyshev; (b) elliptic.

A. Exhaustive Search Results

In order to assess the performance of Q-GA and GA, we have
obtained the optimal solution (for a predefined accuracy), by
using a two-dimensional exhaustive search (EXS) process over
the domain { , [0.01;5.01]}x yÎ  with 256 points in each direction
( , )x y . Table I shows the results of this simulation, which are the
optimal equalizer coefficients and variances of the symmetry
error.

TABLE I
EQUALIZATION RESULTS FOR EXHAUSTIVE SEARCH PROCESS

Filters Equalizer coefficients [ , ]x y 2 410h
-

es ´

Chebyshev [0.657, 0.226] 1.1648

Elliptic [0.63, 0.20] 1.5695

B. Parameters of the Modified GA (Q-GA)

The Q-GA parameters used for the phase equalizer design are:
· population size: 20 individuals/quadrant/decomposition;
· number of generations: 10;
· chromosome or bit string: 12 bits per variable;
· single point crossover probability c( )p : 0.8;

· mutation probability m( )p : 1/(population size);

· selection method: stochastic remainder without replacement
[7];

· fitness function defined as
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where N  is the equalizer order and 101 10-a = ´  is a constant
used for avoiding that the fitness function tends to infinity when
the variance tends to zero.
The use of 12 bits per variable for the chromosome coding is
adequate for the quantization levels of the coefficients. The used
parameters lead to 200 evaluations of the objective function per
quadrant. To assess the process consistency, we have run it 100
times (Â=100).

B.1 Evaluation Methods

The evaluation of the obtained solutions, from Â realizations,
considering the winner quadrant ( vQ ) in each decomposition
(j ), has been performed by using the following measurements:

· Mean value of the impulse response symmetry error:
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· Variance of the impulse response symmetry error:
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These measures are normalized with respect to the impulse
response symmetry error obtained from the filter without
equalization ( 2 ( (0))hes j ).

B.2 Q-GA Equalization Results

Considering the exhaustive search results (EXS) shown in
Table I, the Q-GA decompositions should find the following
sequence of winner quadrants: [I, I, II, I, IV], from the five
decomposition levels (Fig. 4). Such decompositions are named
Solution 1.
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Fig. 4 Decomposition sequence considering the exhaustive search results
(EXS); sequence also obtained by the Q-GA algorithm.

By analyzing the performance surface characteristics (Fig. 1)
along with the GA operation theory, there exists a nonzero
probability that the process finds the following alternative
sequence of winner quadrants: [I, I, I, II, III] (Fig. 5). These
decompositions are here called Solution 2. Such a solution also
leads to the region where the optimum point is located.
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Fig. 5. Alternative decomposition sequence.

For all the realizations, in the case of the Chebyshev filter
equalizer design, the Q-GA process found 48% as Solution 1 and
52% as Solution 2. In the elliptic filter case, the algorithm found
40% as Solution 1 and 60% as Solution 2.
Figure 6 and 7 show the mean value (Eq.10) of each solution for
both the equalizer designs.
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Fig. 6. Normalized mean value of the impulse response symmetry error.
(a) Chebyshev; (b) elliptic.
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Fig. 7. Normalized mean value (details) of the impulse response
symmetry error. (a) Chebyshev; (b) elliptic.

Figures 8 and 9 show the variance of the impulse response
symmetry error from the Â realizations. The obtained values
confirm that the used approach presents a satisfactory
performance for both solutions in both equalizer designs.
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Fig. 8. Impulse response symmetry error variance for the Chebyshev
filter equalizer design.
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Fig. 9. Impulse response symmetry error variance for the elliptic filter
equalizer design.

By analyzing the mean value of the impulse response symmetry
error depicted in Fig. 6, one can verify a significant decrease in
this value for the first decomposition. In the next



decompositions, this value is slightly decreasing, as shown in
Fig. 7. Such a characteristic plays an important role in the
computational complexity analysis. For the Q-GA approach, the
computational effort is strongly related to the decomposition
sequence. As previously presented (Section 2.2), the algorithm
complexity is ( 4 )ne ni ng´ ´ ´ . Considering a constant number
of individuals and generations, then, the number of objective
function evaluations increases proportionally to the established
number of decompositions. Thus, we can measure an attenuation
coefficient, between the impulse response symmetry error and
the defined number of decompositions, given by
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where 2 ( (0))hes j  denotes the impulse response symmetry error
obtained from the original filter to be equalized.
Figure 10 shows the attenuation coefficient values, considering 5
decompositions, for both solutions in both designed equalizers.
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Fig. 10. Attenuation coefficient. (a) Chebyshev; (b) elliptic.

Based on the variance values of the impulse response symmetry
error (Figs. 8 and 9), and attenuation coefficient values (Fig. 10),
we conclude that a reduced number of decompositions can be
used. This choice decreases the computational load without
affecting the algorithm performance in the solution search.
For the studied cases, we randomly select 6 possible solutions in
Â realizations, considering at most 3 decompositions. Thus, after
2400 evaluations (800 per decomposition) of the objective
function, the equalizer coefficients and the impulse response
symmetry error values have been obtained and are shown in
Tables II, III and IV. Figures 11, 12 and 13 depict the impulse
responses of the equalized filters superimposed on the ones
obtained by EXS (Table I). For all cases, the convergence region
that contains the optimal solution has always been found.

TABLE II
EQUALIZATION RESULTS BY Q-GA (1ST DECOMPOSITION)

Filters Equalizer coefficients [ , ]x y 2 410h
-

es ´

Chebyshev [0.794, 0.253] 1.31
Elliptic [0.468, 0.184] 2.22
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Fig. 11. Normalized impulse response after the equalization via EXS and
Q-GA (1st decomposition). (a) Chebyshev; (b) elliptic.

TABLE III
EQUALIZATION RESULTS BY Q-GA (2nd DECOMPOSITION)

Filters Equalizer coefficients [ , ]x y 2 410h
-

es ´

Chebyshev [0.7112, 0.234] 1.19
Elliptic [0.5784, 0.1956] 1.59
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Fig. 12. Normalized impulse response after the equalization via EXS and
Q-GA (2nd decomposition). (a) Chebyshev; (b) elliptic

TABLE IV
EQUALIZATION RESULTS BY Q-GA (3rd DECOMPOSITION)

Filters Equalizer coefficients [ , ]x y 2 410h
-

es ´

Chebyshev [0.607, 0.21] 1.17
Elliptic [0.633, 0.20] 1.58
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Fig. 13. Normalized impulse response after the equalization via EXS and
Q-GA (3rd decomposition). (a) Chebyshev; (b) elliptic.



By considering the obtained results of the 2nd and 3rd

decompositions, we can verify that the impulse response
symmetry errors do not present a significant difference. The
impulse responses of the equalized systems (filter+equalizer),
considering the obtained results from the 2nd decomposition
(Fig. 12), are very close to the ones obtained by EXS procedure.
Therefore, only two decompositions are needed to obtain a
satisfactory impulse response. In this way, 1600 evaluations of
the objective function are carried out.

B.3 Conventional GA results

To ratify the excellent performance of the Q-GA approach, we
have compared it with the conventional GA [8], for the equalizer
design of the previously specified filters. The conventional GA
parameters used for simulation are:
· population size: 50 individuals;
· number of generations: 50;
· number of realizations: 50;
· chromosome or bit string: 12 bits per variable;
· single point crossover probability c( )p : 0.8;

· mutation probability m( )p : 1/(population size);

· selection method: stochastic remainder without replacement
[8];

For each realization, 2500 evaluations of the objective function
have been carried out. The mean and variance of the fitness
function, for the best individual, normalized with respect to
expected fitness (inverse of the impulse response symmetry error
found via EXS), are obtained for 50 realizations. These results
are depicted in Figs. 14 and 15. Analyzing such results, we can
verify the poor performance of the conventional GA, as
compared with Q-GA approach.

V. CONCLUSIONS

This paper has accomplished a performance analysis for the
Q-GA approach – a modified genetic algorithm for designing
phase equalizers. For such, we have used different assessment
criteria, which showed the effectiveness of the Q-GA approach
for equalizer designs. Thus, within a given search space, it
provides the convergence region; overcomes the local minima,
which are widespread in the objective function; and leads to a
useful set of possible solutions.
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Fig. 14. (a) Mean and (b) variance of the fitness function for the
conventional GA applied to Chebyshev filter equalization.
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Fig. 15. (a) Mean and (b) variance of the fitness function for the
conventional GA applied to elliptic filter equalization.
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