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Abstract - In this paper, the use of adaptive interpolated FIR-LMS
structures for echo cancelling in digital telephone systems is
assessed. These structures are compared with the widely used
FIR-LMS one. By using interpolated structures, it is possible to
achieve substantial savings in the required arithmetic for both
filtering and tap updating operations. Experimental results show
that the interpolated structures also outperform, in terms of
residual echo, the traditional FIR structure.

I. INTRODUCTION

The most common implementation of adaptive echo
cancellers is based on FIR-LMS filter structures [1-4]. A
typical block diagram of an adaptive echo canceller is
depicted in Fig. 1. The widespread use of FIR-LMS
cancellers is mainly due to its simple implementation and
stability. However, a major drawback of this structure for
echo cancelling applications is the large number of taps
required. For instance, to accommodate echoes of the
order of 16-64 ms, at a sampling rate of 8 kHz, we need
512 taps. In acoustic echo cancellation this question
becomes even more emphasized, usually demanding
adaptive filters having several thousands of taps. In this
sense, considerable research effort has been made to
reduce the computational complexity of the echo
cancellers, while maintaining a satisfactory echo
reduction.
An interesting alternative to reduce the computational
complexity in digital FIR filters is the use of interpolated
FIR (IFIR) filters [5,6]. The basic idea behind the IFIR
filters is to remove quite a few impulse response samples,
and next, recreating them through an interpolating filter.
Such a procedure leads to a less expensive implementation
of FIR filters. In addition, IFIR filters possess all desirable
properties of the FIR structures. In the same way, the
adaptive version of IFIR (AIFIR) filters can be used to
replace the classical adaptive FIR (AFIR) filters in
applications in which a large number of taps are required
[5-10]. The use of adaptive IFIR structures permits to
reduce the number of arithmetic operations involved in
both filtering and tap updating.
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In this work, an echo canceller using an ordinary
FIR-LMS implementation is compared with an IFIR-LMS
one for performance. For this comparison, real-world data,
obtained from a digital telephone system, is used. Through
the presented simulations, it is possible to verify that the
interpolated structure outperforms the classical one.
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Fig. 1. Typical block diagram of an echo cancelling system.

II. INTERPOLATED FIR FILTER STRUCTURES

Based on the previous concept, a fixed interpolated filter
is implemented by the series combination of two basic
blocks [5,6]:

i) a sparse FIR filter;
ii) an interpolating FIR filter.
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Fig. 2. IFIR filter. (a) Direct, and (b) Inverted structures.

In Fig. 2, the direct and inverted IFIR structures are
shown. Such structures lead to a reduction in about (1/ )L
the number of arithmetic operations when compared with
the equivalent ordinary approach, where L  represents the
filter decimating factor. In other words, the sparse filter



has ( 1)L -  zero-taps between two nonzero taps. Thus, the
advantage of this structure becomes evident regarding the
required number of computations to determine an output
sample. In the next section, we discuss the implementation
of the adaptive version of the structures of Fig. 2.

III. WEIGHT UPDATE EQUATIONS

Figure 3 depicts the block diagrams for the ordinary
FIR-LMS and IFIR-LMS filters. In Fig. 3,

( ) [ ( ), ( 1), , ( 1)]Tn x n x n x n N= - - +X K  and ( )d n
represent the input vector (far signal) and echo to be
cancelled, respectively. For Fig. 3(a), the well-known tap-
update recursion (LMS algorithm [4]) is given by

1 1 1( 1) ( ) 2 ( ) ( ),n n e n n+ = + mW W X                 (1)

where 1 10 11 1, 1( ) [ ( ), ( ), , ( )]T
Nn w n w n w n
-

=W K  is the

adaptive-tap vector; and 1( )e n  is the error signal obtained
by

1 1 1( ) ( ) ( ) ( ) ( ) ( )Te n d n y n d n n n= - = - X W .          (2)

The tap-update expression for the IFIR-LMS direct
structure, Fig. 3(b), is given by [11]

2 2 2( 1) ( ( ) 2 ( ) ( )).In n e n n+ = + mW F W X           (3)

In (3), vector ( ) [ ( ), ( 1), , ( 1)]T
I I I In x n x n x n N= - - +X K

represents the filtered input signal (filtered far signal),
where
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where ji , with 0, , 1j M= -K , represents the coefficients

of the interpolating filter. Note that the block diagram of
Fig. 3(b) corresponds to the filtered-X LMS algorithm
[12]. In this way, to adapt the taps in an IFIR-LMS
structure, instead of the classical LMS algorithm, the
filtered version of this algorithm must be used. In addition,
due to the sparse nature of the adaptive filter, the study of
the adaptive IFIR filter needs to be carried out by using a
constrained analysis. A detailed stochastic analysis of the
IFIR-LMS filter is presented in [11]. Matrix F  has the
function of keeping the adaptive-tap vector sparse during
the adaptation process. For this case, the error signal is
given by
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(6)
By commuting the adaptive and interpolator filters in Fig.
3(b) (assuming slow adaptation) [7,13], one obtains the
following update equation

3 3 3( 1) ( ( ) 2 ( ) ( )) ,In n e n n+ = + mW F W X              (7)

Matrix F  in (7) has the same structure as in (3). From Fig.
3(c), the error signal in (7), is determined as follows
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Notice, from (6) and (8), that the expressions for the error
signals are different.
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Fig. 3. (a) Classical FIR-LMS filter. IFIR-LMS filter: (b) direct; and
(c) inverted structures.



A. Structure of Matrix F

In this section, we show how the matrix F is constructed.
To this end, and without loss of generality, this is
discussed through an example. Let us consider an adaptive
filter with four taps and an interpolating factor (decimating
factor) 2L = . This configuration leads to two taps to be
adapted; while the remaining two are fixed to zero. The
adaptive filter has the following form

0 1 2 3( ) [ ( ), ( ), ( ), ( )]n w n w n w n w n=W , however, according
to previous conditions, one has 1 3( ) ( ) 0w n w n= = . This
results in that only the even taps are adapted. Thus, to
fulfill the above condition, Matrix F must be [7,11]
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IV. COMPUTATIONAL COMPLEXITY

The required number of computations in each iteration for
both operations, filtering and tap updating, for the
FIR-LMS and IFIR-LMS structures having N taps, are
shown in Table I. For the sake of simplicity, the
multiplication by the constant m  (step size) is not
considered. Since the number of coefficients of the
interpolator filter is very low (three coefficients in our
implementation), the required arithmetic operations by the
interpolating filter are also disregarded. Note that
depending on the chosen interpolating factor ( L ), the
IFIR-LMS structure can reduce in 50% ( 2L = ) the
required computations. If, for instance, a value of 3L =

were used, we would obtain a computation saving of
approximately 70%.

TABLE I
REQUIRED COMPUTATIONS FOR THE ADAPTIVE ALGORITHMS

Filtering Updating Total
Structure

+ ´ + ´ + ´

Ordinary
FIR-LMS N N N N 2N 2N

IFIR-LMS N/L N/L N/L N/L 2(N/L) 2(N/L)

V. IMPLEMENTATION COMMENTS

In this section, we address the implementation of the
filtering and tap-update operations of an IFIR-LMS
structure for echo cancelling application. By considering
the implementation cost and performance, the inverted
structure was chosen (Fig. 3(c)). Note that it uses a single
interpolator, instead of two as required by the direct form.
Regarding the performance, in the experimental result
section, it is verified that the inverted form outperforms

the direct one. The tap-updating equation for the inverted
form is given by the recursive expression (7). In our
implementation, we have used 2L = . Thus, the
implementation of the adaptive algorithm is summarized
as follows:

i) define an adaptive vector with N/2 taps;
ii) determine ( )I nx : the filtered input is obtained by

filtering the far signal through the interpolator;
iii) by storing ( )I nx  in an N-element circular buffer, the

( )I nX vector is created;
iv) echo estimate, 3 ( )y n : select the even samples from the

circular buffer for creating an N/2-element filtered
input vector, and next, perform the scalar product with
the N/2-tap adaptive vector. This operation is
equivalent to ( ) ( )T

I n nX W , where ( )I nX  is an 1N ´

vector and ( )nW  is an 1N ´  sparse vector.
v) determine the error signal between the echo signal and

its estimate;
vi) updating operation: the adaptive vector is updated by

using the same element selection as in the step (iv).

Note that in fact, we are working with an 1N ´  input
vector, from which we use only N/2 samples in our
computations. The advantage of this is that we can cover
echo duration corresponding to N-taps. An implementation
of this echo cancelling structure has been carried out using
a fixed-point Analog Devices digital signal processor
(ADSP 218x family). By using 128N =  taps, an
interpolating filter with 3 coefficients, and a sampling rate
of 8 kHz, we have obtained a performance of 1.8 MIPS, in
contrast with 3.3 MIPS resulting from an equivalent
FIR-LMS implementation.

VI. EXPERIMENTAL RESULTS

In this section we present simulation results comparing the
classical FIR-LMS implementation (128 taps) with the two
proposed IFIR-LMS structures for performance. For the
interpolated structures, we use 2L = , resulting in 64 taps
to be adapted. The used interpolator filter is

[0.5, 1, 0.5]=I . For our simulations the far and echo
signals are real-world data, sampled at 8 kHz. The echo
signal to be cancelled is depicted in Fig. 4. To obtain the
fairest possible comparison, the step size m  for each
adaptive canceller is selected to attain the minimum value
for the variance of the echo residual. To this end, we
raised the value of m  for each adaptive canceller until its
maximum allowable value; i.e., beyond this value, the
adaptive algorithm diverges. For the FIR-LMS and
inverted IFIR-LMS cancellers, we have found max 0.1m = .
Meanwhile, for the direct IFIR-LMS structure,

max 0.06m =  has been obtained.



For each m , we determine the ratio 2
echoresiduals / 2

echos , the
results are depicted in Fig. 5. From that figure, a better
performance of the inverted IFIR-LMS structure, with
respect to both the classical FIR-LMS and direct
IFIR-LMS structures, can be observed. We attribute this
behavior to the fact that in the inverted structure both the
LMS algorithm and adaptive filter use a filtered version of
the echo signal (see Fig. 3(c)). In this case, the interpolator
filter also performs the task of line-noise reduction; hence,
the system (adaptive filter and algorithm) deals with a
cleaner signal. Note that such an improvement is achieved
by using 50% of the number of taps of the classical
FIR-LMS structure. In Fig. 6, a better echo tracking for
the inverted IFIR-LMS structure can be verified, which is
referred to the lower obtained residual echo. For clarity, in
that figure, we have only plotted the curves corresponding
to the inverted-IFIR-LMS and the FIR-LMS structures.
In order to maintain the original signal as unaltered as
possible, the frequency response of the interpolator filter
must be closely related to the signals involved in the
current application. For instance, in our application
(telephone systems with voice-band of 300 to 3400 Hz),
the interpolator is a low-pass filter transparent for the
voice-band spectrum. Design procedures for the
interpolator filter can be found in [14].
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Fig. 4. Real-world echo signal containing 80.000 samples.
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Fig. 5. Relative echo variance against step size. Dark line: ordinary
FIR-LMS; gray line: direct IFIR-LMS; and dotted line: inverted
IFIR-LMS structures.
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Fig. 6. Echo signal and its estimates. Gray line: original echo signal;
dotted lines and solid-dark: echo estimates from FIR-LMS and inverted
IFIR-LMS cancellers, respectively.

VII. CONCLUSIONS

Two IFIR-LMS structures for echo cancelling application
are compared with the classical FIR-LMS one. The
computational complexity reduction, tracking
characteristics as well as the residual echo level of the
adaptive interpolated structures are addressed. Extensive
simulations with real-world data have been carried out to
perform comparisons between the studied structures. From
these, we can verify a better performance of the
interpolated structures, in particular its inverted form, for
echo cancelling in digital voice-transmission applications.
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