
International Telecommunications Symposium – ITS2002, Natal, Brazil

The Rounded Hartley Transform
R. J. de Sobral Cintra, H. M. de Oliveira and C. O. Cintra

Abstract—A new multiplication-free transformation derived from DHT
is introduced: the RHT. Investigations on the properties of the RHT led us
to the identification of an approximate inverse. We showed that RHT is not
involutional like the DHT, but it exhibits approximate involutional prop-
erty. Thus instead of using the actual inverse transform, the RHT is taken
as an involutional transformation, allowing the use of direct (multiplication-
free) to evaluate the inverse. A fast algorithm to compute RHT is presented,
which offers zero multiplications andO(n log n) additions for power-of-2
blocklengths. This algorithm shows embedding properties. We also ex-
tended RHT to the two-dimensional case. This permitted us to perform a
preliminary analysis on the effects of RHT on images. Despite of some SNR
loss, RHT can be interesting for applications which involve image monitor-
ing associated to decision making, such as military applications or medical
imaging.

I. I NTRODUCTION

DISCRETE transforms have a significant role in digital sig-
nal processing. A relevant example is the discrete Hartley

transform (DHT), which offers many advantages over the more
popular discrete Fourier transform. To cite major advantages,
(i) DHT is a real-valued transform (no complex arithmetic is
needed), (ii) it possesses same formula for forward and inverse
transform, (iii) it has a computational equivalence to DFT [1],
(iv) DHT shows high symmetry, which is desirable from the
implementation point-of-view, and (v) it is mathematically el-
egant. These characteristics have motivated a lot of research
to promote the use of DHT instead of DFT. Thus DHT had hit
many applications such as spectral analysis, convolution com-
putation, adaptive filters, interpolation, communication systems
and medical imaging [2]. A representative reference list with
the literature about the Hartley transform is found in [3].

Another important area of signal processing concerns with the
minimal complexity methods. The class of multiplication-free
discrete transforms, such as Walsh/Hadamard transform, has at-
tracted much interest, since those transforms provide low com-
putational complexity. The multiplication-free paradigm was
adopted by Reedet alli in the implementation of the arithmetic
Fourier transform [4]. Recently another algorithm of this kind
was proposed: the arithmetic Hartley transform [5]. An interest-
ing approach was done by Bhatnagar: using Ramanujan num-
bers, another multiplication-free transform was invented [6].
Approximation procedures are also being taken in considera-
tion. In a recent paper [7], Dee-Jeoti proposed the approximate
fast Hartley transform, though the multiplicative complexity of
this procedure is not null.

Seeking for new procedures with the multiplication-free prop-
erty, we introduced in this paper a new transformation: the
rounded Hartley transform (RHT), a transformation with zero
multiplicative complexity. Figure 1 places the RHT among other
transforms.
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Fig. 1. Discrete transforms and some of their classes. Rounded Hartley trans-
form is placed in the intersection of many classes.

In section II and III, we define the RHT and discuss the phi-
losophy behind its constructs: an approximate inverse. Sec-
tion IV brings a first approach to devise a fast algorithm for
RHT, using the theoretical background found in [8]. We ex-
plored a naive example, 16-RHT, and derived arithmetic com-
plexity bounds. Subsequently in section V, the two-dimensional
case was analyzed by introducing the 2-D RHT. The effects of
2-D RHT on standard classical images were investigated, par-
ticularly we calculated peak signal-noise ratio. We ended this
paper establishing a connection between the new RHT and the
Walsh/Hadamard transform.

II. T HE ROUNDED HARTLEY TRANSFORM

Let v be ann-dimensional vector with real elements. The
discrete Hartley transform establishes a pair of signal vectors

v H←→ V, where the elements ofV are defined by

Vk ,
n−1∑

i=0

vi cas
(

2πik

n

)
, k = 0, 1, . . . , n− 1, (1)

wherecas(x) , cos(x) + sin(x). This transform leads to the
definition of Hartley matrixHn, which elements are on the form
hi,k = cas

(
2πik

n

)
.

The roundoff of a matrix is obtained by rounding off its ele-
ments. Thus the rounded Hartley matrix elementshi,k are de-
fined by

hi,k ,


cas

(
2πik

n

)

︸ ︷︷ ︸
hi,k


 , i, k = 0, 1, . . . , n− 1, (2)

where[·] denotes the nearest integer function. For the sake of
notation, let us denote the rounded Hartley matrix of ordern by
HHHn.

It is easy to see that the elementshi,k belong to{−1, 0, 1},
since| cas(x)| ≤ √

2. Consequently, the rounded Hartley trans-
form can be implemented using only additions, regardless the
blocklength. Rounded Hartley transform is a multiplication-free
transform, which can be very attractive from the practical point
of view.

The first questions to be answered are: (i) Is the spectrum
derived from RHT a good estimation of the (true) Hartley spec-
trum? (ii) Is there an inverse Hartley transform?
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Fig. 2. A Simple example. Hartley spectrum evaluated by discrete Hartley
transformV (filled line —) and rounded Hartley transformV (dotted line· · · )
of a vectorv with 64 samples of functionf(x) = cos(90πx)(x − 1

2
)2 , 0 ≤

x ≤ 1.

(a)n = 24 (b) n = 26 (c) n = 28 (d) n = 210

Fig. 3. Image patterns derived from rounded Hartley matrix for ordersn =
16, 64, 256, 1024. Each matrixHHH is converted into intensity diagrams by rep-
resenting their elements in a gray scale. Remark the presence of embedding
patterns.

To begin with, we investigated the DHT and the RHT spectra
for a few simple signals (HT has real-valued components). Fig-
ure 2 shows both spectra for the signalf(x) = cos(90πx)(x −
1
2 )2 sampled by 64 points. A pretty good agreement was ob-
served. A careful analysis of the error, or at least an upper
bound, is currently being investigated.

III. A PPROXIMATE INVERSE

In order to gain some insight on rounded Hartley transform
matrices, intensity diagrams were generated. The valuehi,k of
each element ofHHHn is converted into a gray-scale colormap and
the matrixHHHn is then represented by a square withn2 pixels.
Some interesting patterns derived from RHT are show in Fig-
ure 3.

To keep rigorous with Hartley-Bracewell definition of the
Hartley transform, in this section, the Hartley matrixHn and
the rounded Hartley transformHHHn are scaled by1/

√
n. Without

any kind of conceptual loss, this scaling does not interfere with
the results hereafter derived and brings a greater elegance and
harmony to the following constructs.

One of the most appealing properties of the classical DHT is
the fact that discrete Hartley matrixHn is an involution, which
implies H−1

n = Hn (self-inverse). However, after the round
operation,cas(·) kernel loses this characteristic and RHT is not
an involution, sinceHHH−1

n 6= HHHn.
We found out by explicit computation that the inverse ofHHHn

does exist for ordern ≤ 1024. UnfortunatelyHHH−1
n is not as in-

HHHn

HHHn

VVV

v

vvv

easy

(“almost” v) easy

HHH−1
n

harder

Fig. 4. Approximate inverse. This diagram show the main idea behind our
work. We are concerned with matrices that “almost” invert. Filled arrows rep-
resent low computational complexity, while the dashed one stands for a higher
computational complexity.

teresting asHHHn, since it is computationally more intensive. This
fact was the key point that led us to a greater concern on inverse
matrices. We are particularly interested in finding out matri-
ces which have the properties of (i) beingalmostthe inverse of
a given matrix and (ii) being computationally more interesting
than the actual inverse.

That is, given a matrixA we are looking for a matrix̃A, such
as:

A · Ã ≈ I, (3)

whereI is the identity matrix. This is called anapproximate
inverse.

After further examination onHHH−1
n , we observed that it resem-

blesHHHn itself. In fact,HHH−1
n is almostHHHn. SinceHHHn is defined

from Hn, we verify thatHHHn is, in some sense,almost involu-
tional The qualitative idea was exposed, Figure 4 may elucidate
it.

A. An Approximate Inverse of Rounded Hartley Matrix

Definition 1 (Matrix Period) The period of a matrixA is the
smallest positive integerk such thatAk+1 = A. ¤

For example, an idempotent transformationA satisfiesA2 =
A, since it has periodk = 1. A linear transformation which has
periodk = 2 is an involution.

Definition 2 Then-norm of a matrixA is defined by

µ̄(A) =
‖A‖
n

, (4)

wheren is the order ofA and‖ · ‖ represents Frobenius norm
of a matrix:

‖A‖ =




n∑

i=1

n∑

j=1

|ai,j |2



1/2

,

whereai,j are the elements of matrixA. ¤

Now let us examine the rounded Hartley matrixHHHn. Evaluat-
ing then-norm ofHHH2

n − In for n = 2, 3, . . . , 1024, one can plot
the graph depicted in Figure 5. After a data analysis of these
points, we fitted them to a Freundlich model:

µ̄
(
HHH2

n − In

)
≈ anb, (5)

wherea ≈ 0.35167 andb ≈ −0.49324.
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These observations allowed us to infer on the asymptotical be-

havior ofµ̄
(
HHH2

n − In

)
and state the following conjecture:

Conjecture 1

lim
n→∞

µ̄
(
HHH2

n − In

)
= 0. (6)

¤
An interpretation of this conjecture is the following. In a sense,
the “distance” betweenHHH2

n and In is decreasing as we have
larger blocklengthsn.

Definition 3 In the scope of this work, an approximate involu-
tion will be defined as a transformationA which satisfies

A2 ≈ I. (7)

Alternatively, it can be viewed as a transformation with approx-
imate period of 2. ¤
Thus we can stated that the rounded Hartley matrices are ap-
proximate involutions.

B. General Comments

In this subsection, we state some initial observations about the
rounded Hartley transform without further derivations or proofs.

B.1 Error

Since an approximate inverse is not precisely the inverse of a
given matrix, this approach of retrieving data from an approx-
imate inverse introduces some degradation, as expected. The
RHT is given byVVV = HHHnv. We shall usevvv = HHHnVVV = HHH2

nv
to compute the inverse, instead of the exact inverse RHTv =
HHH−1

n VVV. Thus this procedure introduces an error by the use of the
approximate inverse. The error is therefore

vvv − v =
(
HHH2

n − In

)
v. (8)

As we see, the errorvvv − v depends onHHH2
n − In, as well as on

the original messagev.

B.2 Fractal

Since the measurēµ
(
HHH2

n − In

)
presents a fractional expo-

nent (Equation 5), objectsHHH2
n − In could be associated with

some fractal. The patterns displayed in Figure 6 show a kind of
self-similar behavior, as expected.

(a)n = 56 (b) n = 108

(c) n = 134 (d) n = 256

Fig. 6. Some interesting pictorial matrix patterns forHHH2
n, n = 56, 108, 134

and256. A gray scale is used to plot the intensity of the elements: the darker
the element, the greater its magnitude (white denotes zeroes). Main diagonal
omitted for better visualization, since the magnitude of the diagonal elements is
much greater than the other elements’.

IV. A FAST ALGORITHM FOR RHT

In order to derive a fast algorithm, we use a naive example:
16-point RHT, which transform matrixHHH16 is shown below:

HHH16 =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 − − − − − − − 1
1 1 1 − − − 1 1 1 − − −
1 1 − − 1 1 1 − − 1 1 − − −
1 1 − − 1 1 − − 1 1 − − 1 1 − −
1 1 − 1 1 − 1 − − 1 − − 1 −
1 − 1 − 1 − 1 − 1 − 1 −
1 − 1 − 1 − 1 − 1 − 1 − 1 −
1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 −
1 − 1 − 1 − 1 − 1 − 1 − 1 −
1 − 1 − 1 − 1 − 1 − 1 −
1 − 1 − − 1 − − 1 − 1 1 − 1
1 − − 1 1 − − 1 1 − − 1 1 − − 1
1 − − − 1 1 − − 1 1 1 − − 1
1 − − − 1 1 1 − − − 1 1
1 1 − − − − − − − 1 1 1 1 1




,

where “−” represents−1 and blank spaces are zeroes.

Using methods described in [9], [8], we obtained the imple-
mentation diagram displayed in Figure 7.

The algorithm turns out to have embedding properties:
shorter transforms are found in major ones. In the 16-point RHT,
the following transforms are embedded: 2-, 4- and 8-point RHT.
By zeroing some inputs, a shorter transform is promptly avail-
able (e.g. letv8 = · · · = v15 = 0 to have an 8-point RHT).
This feature makes the algorithm particularly flexible to a much
larger range of applicabilities [9], [8], [10].

For blocklengths which are power of two, one can find out the
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Fig. 7. Flow graph for the fast algorithm of 16-point rounded Hartley transform.
Note the complete absence of multipliers. The dashed boxes denote shorter
transforms embedded in 16-point RHT.

the following arithmetic complexity:

A(n) = O(n log2 n), (9)

M(n) = 0, (10)

whereO(·) is the Landau symbol.

V. 2-D ROUNDED HARTLEY TRANSFORM

Original two-dimensional Hartley transform of ann×n image
is defined by

bu,v =
n−1∑

i=0

n−1∑

j=0

ai,j · cas
(

ui + vj

n

)
, (11)

whereai,j are the elements of an imageA andbu,v are the ele-
ments of the Hartley transform ofA.

Sincecas(·) kernel is not separable, we cannot express the
two-dimensional transform in terms of a single matrix equa-
tion, like the 2-D discrete Fourier transform. Thus, we defined
the two-dimensional rounded Hartley transform similarly to
Bracewell’s method for two-dimensional discrete Hartley trans-
form [11].

Let A be then × n image matrix. We start the procedure by
calculating a temporary matrixT, as follows:

TTT = HHHn ·A ·HHHn, (12)

whereHHHn is the rounded Hartley matrix of ordern. This is
equivalent to take one-dimensional Hartley transform of the
rows, and then transform the columns [12].

Establishing that the elements ofTTT are represented on
the form ti,j , i, j = 0, . . . , n − 1, we can consider three
new matrices built from the temporary matrixTTT: TTT(c), TTT(l)

and TTT(cl) which elements areti,n−j (mod n), tn−i (mod n),j ,
tn−i (mod n),n−j (mod n), respectively. These different indexes
flip matrixTTT in left-right direction, except from the first column
(TTT(c)); in up-down direction, except from the first line (TTT(l));
and both operations at same time (TTT(cl)).

Using these constructs, the rounded Hartley transformBBB of
ann× n imageA is defined as

BBB , TTT + TTT(c) + TTT(l) −TTT(cl). (13)

This definition derives directly from thecas(·) property:
cas(a+b) = cas(a) cas(b)+cas(a) cas(−b)+cas(−a) cas(b)−
cas(−a) cas(−b).

Program 1 A simple MATLAB program to compute 2-D RHT,
its approximate inverse and the PSNR.
function Z = rcas(N)

i = 0:(N-1);
j = 0:(N-1);
[I,J] = meshgrid(i,j);
Z = round ( cas ( 2 * pi / N * I .* J) );

function [B, AA, PSNR] = twodrht(file)

A = imread(file ,’bmp’);
A = double(A);
[M, N] = size(A);
if M ˜= N end;
colormap(gray(256));
K = rcas(N);
TEMP = K * A * K;
TEMPFLIPCOL = [TEMP(:,1),fliplr(TEMP(:,2:N))];
TEMPFLIPROW = [TEMP(1,:);flipud(TEMP(2:N,:))];
TEMPFLIPRC = [TEMPFLIPCOL(1,:);flipud(TEMPFLIPCOL(2:N,:))];
B = (1/2)*(TEMP+TEMPFLIPCOL+TEMPFLIPROW-TEMPFLIPRC);
temp = (1/N) * (1/N) * K * B * K;
tempFLIPCOL = [temp(:,1),fliplr(temp(:,2:N))];
tempFLIPROW = [temp(1,:);flipud(temp(2:N,:))];
tempFLIPRC = [tempFLIPCOL(1,:);flipud(tempFLIPCOL(2:N,:))];
AA = (1/2)*(temp+tempFLIPCOL+tempFLIPROW-tempFLIPRC);
MSE = (1/Nˆ2) * sum(sum((AA-A).ˆ2));
RMSE = sqrt(MSE);
PSNR = 20 * log10(255/RMSE);

Aiming to investigate such degradation (which follows from
the use of the approximate inverse), standard images from Sig-
nal and Image Processing Institute Image Database [13] at Uni-
versity of Southern California were analyzed. Figures 8 and 9
present original images and their respective recovered images
using the approximate inverse transform instead of the (exact)
inverse transform. Program 1 lists a naive implementation of
2-D RHT usingMATLAB .

Table I brings PSNR (Peak Signal-Noise Ratio) of the stan-
dard images after a direct RHT and an approximate inverse
RHT. Observe that the PSNR is image dependent: the quanti-
zation noise due to the rounding depends on the original image
characteristics, such as shape, contrast, dimension etc.

VI. CONNECTION WITH FOURIER AND

WALSH/HADAMARD TRANSFORM

As final comments on RHT, we present some relationship be-
tween this new transform and other well-known transforms such
as Fourier and Walsh/Hadamard transforms.

Since DHT can be used to compute de DFT [10], and the RHT
furnishes a estimate for DHT, we can use RHT to derive a rough
— but fast — evaluation of Fourier spectrum.

de Oliveira and co-workers [14] found a relationship between
discrete Hartley transform and Hadamard transform. Such link
was exploited to derive new fast algorithms [8], [14], [15], [16].
In the present framework, we are led to following conjecture:
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(a) Moon surface

(b) Airplane

(c) Aerial

Fig. 8. Direct and Approximate inverse Transform. The original pictures dis-
played on left were direct and approximate inverse transformed via the rounded
Hartley transform. Resulting images are seen on the right. Since RHT is an
approximate (and not an exact) involution, it introduces noise due to its nature.

TABLE I

PSNROF SOME STANDARD IMAGES AFTER A DIRECT AND APPROXIMATE

INVERSE ROUNDEDHARTLEY TRANSFORM. ALL IMAGES WERE OBTAINED

FROM USC-SIPI IMAGE DATABASE. IN PARENTHESIS, IMAGE ID NUMBER.

Image Dimension (pixels) PSNR (dB)
Moon surface (5.1.09 ) 256× 256 26.5522

Airplane (5.1.11 ) 256× 256 25.7277
Aerial (5.2.09 512× 512 22.2006
APC (7.1.08 ) 512× 512 27.3035
Tank (7.1.09 ) 512× 512 24.4590

(a) APC

(b) Tank

Fig. 9. Direct and Approximate inverse Transform. Military images.

Conjecture 2 Let n be a power of 2. The matrixHHHn is iden-
tical to Walsh/Hadamard matrix of same order, except for null
elements and for a permutation of columns. ¤

For example, the column permutation that, except for zero ele-
ments, converts an 8-point rounded Hartley matrix into a Walsh
transformation is(4 8) (cyclic notation).

VII. C ONCLUSIONS

Discrete Hartley transform has long been used in practical
applications. It is real-valued self-inverse transform, more sym-
metrical than the DFT [10].

A new multiplication-free transform derived from DHT is in-
troduced, the RHT, which kept many properties of discrete Hart-
ley transform. In spite of not being involutional, it is shown that
RHT exhibits approximate involutional property, a new concept
derived from the periodicity of matrices.

The approximate involutional property was induced from ap-
proximate inverse definition. Instead of using the (true) inverse
transformation, the RHT is viewed as an involutional transfor-
mation, allowing the use of direct (multiplication-free) to eval-
uate the inverse. Thus, the software/hardware to be used in the
computation of both the direct and the inverse RHT becomes
exactly the same. The price to be paid by not using the exact
inverse transform is some degradation when recovering original
signal.

Fast algorithms to compute RHT are presented showing em-
bedded properties. The 2-D RHT is also defined, allowing to
analyze the effects of this approach on standard images. Despite
of SNR loss, RHT can be very interesting for applications in-
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volving image monitoring associated to decision making, such
as military applications or medical imaging.

RHT is offered as an efficient way to compute real-time ini-
tial estimations of spectral evaluations. Refinement algorithms
can be used to improve the image or spectral estimation, when
necessary. A class of refinement algorithms for this particularly
transform is now our object of investigation.
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