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Abstract— We propose an algebraic approach to the blind single-input
multiple-outputs deconvolution problem. The approach uses an input-output
system identification, and then solves directly the Bezout equation which un-
derlies the deconvolution problem. Important enough, the proposed approach
allows one to solve the Bezout identity based on the single knowledge of the
channel’s output and, this holds true even in a noisy setting. The system
identification step admits a straightforward interpretation in terms of spa-
tial and temporal linear prediction. An important feature of the approach
is that the number of nonzero terms in the channel-equalizer combined re-
sponse does not exceed the difference between the channel and the equalizer
orders. For the overmodeled case this combined response vanishes. Moreover,
a method to blindly identify the channel as the minimum polynomial basis of
a certain subspace may be deduced from this approach. A link with subspace
and least squares methods is thus straightforward.

I. INTRODUCTION

Let {s(n)}, an unobservable sequence of symbols emitted by
a digital source, be sent through a single-input, L-outputs com-
munication channel as depicted in Figure 1. The observed signal
Y (n) ∈ C

L, is modelled as
y1(n)

...
yL(n)




︸ ︷︷ ︸
Y (n)

=


h1(z)

...
hL(z)




︸ ︷︷ ︸
H(z)

s(n) +


w1(n)

...
wL(n)




︸ ︷︷ ︸
W (n)

, (1)

where we interpret z as the unit delay operator: zs(n) = s(n −
1). In this model, H(z) represents the L dimensional vector-
valued transfer function of the channel and, W (n) ∈ C

L is an
additive noise. Each subchannel, hi(z), corresponds to the prop-
agation path from the source to one of an array of L > 1 sensors
at the receiver. The same model also arises from a fractional-
space setting in which, the subchannels are virtual and represent
the polyphase components of the over sampled channel, see [1]
and references therein.
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Fig. 1. Multichannel equivalent system model.

We are interested in the blind deconvolution/equalization of
such a multichannel, i.e. the reconstruction of the source sym-
bols s(n), up to a scalar factor and an integer delay, from the

Mamadou Mboup is with UFR de Mathématiques et Informatique, Univer-
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sole observation sequence {Y (n)}. The purpose is to solve the
following problem.

Problem 1: Given {Y (·)} a sequence of observations ob-
tained from model (1), find an L-row vector-valued polynomial
G(z) = [g1(z) · · · gL(z)] such that

r(z)
�
= G(z)H(z) =

L∑
�=1

g�(z)h�(z) = αzν , (2)

where α is a scalar scale factor and ν is an integer.

In the noiseless case (W (n) is absent), any solution (if one ex-
ists) of Problem 1 yields a perfect reconstruction of a scaled and
delayed version of the original source signal: s̃(n) = αs(n−ν).
In a noisy setting, however, a solution of this problem does
not allows one to solve directly the corresponding equalization
problem.

The channel may have a finite or infinite impulse response
support. In the former case, the channel’s transfer function is of
the form

H(z) =
κ+1∑
k=0

Hkzk, Hk ∈ C
L.

Each subchannel transfer function, hi(z), i = 1, L, is therefore
a scalar polynomial of degree not exceeding κ + 1. Equation
(2) is thus the well-known Bezout equation, which is known to
be solvable provided the vector valued polynomial H(z) is irre-
ducible. The irreducibility of H(z) means that the polynomials
hi(z), i = 1, L are mutually prime (so-called no common zeros
condition [2]).

In the sequel, we assume that H(z) is an irreducible vector-
valued polynomial of degree κ+1. In these settings, blind multi-
channel deconvolution/equalization reduces to a blind resolution
of the Bezout equation as stated in Problem 1. The different ap-
proaches to the blind equalization problem may be split between
the direct and the indirect equalization methods.

The basic principle of almost all direct methods is implic-
itly the search of a solution of Equation (2) as a global mini-
mum/maximum of a high order statistics cost function, given in
terms of the equalizer output. Examples of very relevant cost
functions are given by the family of minimum entropy criteria
[5] which, as shown in [7], [8], underlies the popular Godard
algorithm [6] as well as the Shalvi-Weinstein [3] and the Super-
exponential algorithms [4].

The starting point of the indirect methods is to observe that,
if H(z) were available then one could easily solve (2). Now,
it has been shown that the second order statistics of the data
are sufficient to identify the channel H(z), under the so-called
no common zeros condition (see [2]). Based on this statement,
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several second order blind identification methods have been de-
veloped. These include the subspace methods, the cyclostation-
arity based methods and the least squares methods (see [1] and
the references therein).

The no common zeros condition, or equivalently the irre-
ducibility of H(z), is a generic condition for all second order
methods, including subspace, cyclostationarity and least squares
methods, all based on this observation. They proceed to first
identify the channel and next equalize it by solving (2).

In this paper, we propose a polynomial approach to Prob-
lem 1. The approach uses, as an intermediary step, an adaptive
input-output system identification of a certain polynomial ma-
trix. This identification which may be interpreted as a spatial
and temporal linear prediction problem, represents the corner-
stone of our approach. Actually the polynomial G(z), that
solves the Bezout equation which underlies the deconvolution
problem, is obtained in terms of this polynomial matrix. An esti-
mation of the channel order (using e.g. SVD) which is generic to
all second order methods is however necessary to solve (2). We
show that the number of nonzero terms in the channel-equalizer
combined response does not exceed the difference between the
orders of the channel and G(z). For the overmodeled case this
combined response vanishes. The procedure proposed can be
used for blind identification and/or blind equalization, and the
Bezout equation can be solved with a minimal and/or a maxi-
mal delay. Finally, a connection with subspace and least squares
methods is presented.

II. A POLYNOMIAL APPROACH

This section starts with the Bezout equation and describes dif-
ferent transformation steps towards the construction of a solu-
tion of Problem 1.

A. Preliminaries

To begin, consider l + m polynomials

p1(z), . . . , pl(z), q1(z), . . . qm(z),

with complex coefficients. The set of the polynomials

l∑
i=1

ai(z)pi(z) +
m∑

j=1

bj(z)qj(z) ; ai(z), bj(z) ∈ C[z]

is a principal ideal of the ring C[z], of polynomials with complex
coefficients. If the generators pi(z), i = 1, l and qj(z), j = 1,m
are mutually prime (i.e. their greatest common divisor is one)
then the principal ideal contains the identity polynomial and
therefore, it coincides with the entire ring C[z]. These elemen-
tary facts are known since Bezout. Now let us define

Q(z)
�
=


 q1(z)

...
qm(z)


 and P (z)

�
=


p1(z)

...
pl(z)


 (3)

and assume that the vector valued polynomial Q(z) ∈ C
m[z]

is irreducible. In this case, one may find a row vector valued
polynomial Q�(z) such that the Bezout identity

Q�(z)Q(z) = 1, (4)

holds. With P (z) as defined above, the vector valued polyno-
mial [

P (z)
Q(z)

]
∈ C

l+m[z]

is also irreducible and likewise, the Bezout equation

[a1(z) · · · al(z)]︸ ︷︷ ︸
A(z)

P (z) + [b1(z) · · · bm(z)]︸ ︷︷ ︸
B(z)

Q(z) = αzν , (5)

where α and ν are a scaling factor and a given degree, respec-
tively, is solvable for A(z), B(z).

Throughout the paper, we shall assume that

deg P (z) = deg Q(z) = κ + 1

and we consider a solution Q�(z) of the Bezout identity (4) hav-
ing deg Q�(z) ≤ κ. Consequently, we are looking for a solution
of (5) of the form

[ A(z) B(z) ] =
κ∑

i=0

[ Ai Bi ]zi.

To proceed, let us write the Bezout equation (5) using the
identity (4) as

A(z)P (z)Q�(z)Q(z)︸ ︷︷ ︸
=1

+B(z)Q(z) = αzν Q�(z)Q(z)︸ ︷︷ ︸
=1

, (6)

or, equivalently, as

{A(z)P (z)Q�(z) + B(z)}Q(z) = {αzνQ�(z)}Q(z). (7)

Now, if the pair {A(z), B(z)} is chosen such that an equality
holds between the two bracketed terms in (7), i.e.,

A(z)P (z)Q�(z) + B(z) = αzνQ�(z), (8)

then this pair must solve the Bezout equation (5). Starting from
this observation, we show below how to construct a solution of
Problem 1.

B. A solution of Problem 1

To begin, let F (z) denotes the (l×m)-matrix valued polyno-
mial

F (z)
�
= P (z)Q�(z) =

2κ+1∑
i=0

Fiz
i, (9)

which appears in (8). As we shall see, this matrix valued polyno-
mial will play a prominent part in the developments that follow.
The next theorem shows how, in the case when F (z) is square,
l = m, one can express a solution of Problem 1, only in terms
of the coefficients matrices Fi.

Theorem 1: Let Q(z) and P (z) be two C
m-polynomials with

deg Q(z) = deg P (z) = κ + 1

and such that Q(z) is irreducible and P0 = P (0) �= 0m. Let
Q�(z) be a C

1×m-polynomial of degree M ≤ κ, which fulfills

Q�(z)Q(z) = 1.
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As in (9), define by F (z), the square polynomial matrix

F (z) = P (z)Q�(z) =
∑
i≥0

Fiz
i, with Fi ∈ C

m×m.

Finally, let

A(z) =
M∑

k=0

Akzk and B(z) =
M∑

k=0

Bkzk

be two C
1×m-polynomials obtained from the systems of equa-

tions


F t
1 F t

2 · · · F t
M+1

F t
2 F t

3 · · · F t
M+2

... . .
.

. .
. ...

F t
M+1 F t

M+2 · · · F t
2M+1




︸ ︷︷ ︸
ΓM+1




At
M
...

At
1

At
0


 =



0m

...
0m

Ψ


 (10a)




AM AM−1 · · · A0

AM−1 AM−2 · · · 01×m

... . .
.

. .
. ...

A0 01×m · · · 01×m







F0

F1

...
FM


 = −




BM

...
B1

B0


 (10b)

for some Ψ ∈ C
m.

Then, for M = κ, the pair {A(z), B(z)} solves the Bezout
equation (5), where ν = 2κ + 1 and the scaling factor is given
by α = ΨtQ0.

Proof: Given a polynomial

X(z) = X0 + X1z + · · · + XKzK ,

we define its reciprocal as

X̂(z) = zKX(z−1) = XK + XK−1z + · · · + X0z
K .

If

X(z) = . . . + X−1z
−1 + X0 + X1z + X2z

2 + . . .

is in Lp×q
2 , we define its strictly causal projection as

[X(z)]+ = X1z + X2z
2 + . . .

and its anticausal projection as

[X(z)]− = . . . + X−1z
−1 + X0.

Now, a direct verification shows that equation (10a) is obtained
from the Laurent expansion of Â(z−1)F (z), by equating to zero
the coefficients of zk, for k = 1,M and by equating the coeff-
icient of zM+1 to Ψt. In a same way, equation (10b) sets the
coefficient of z−k to −BM−k, for k = 1,M . Since deg F (z) =
2κ + 1 and deg A(z) = deg B(z) = M ≤ κ, the strictly causal
and anticausal projections of Â(z−1)F (z) read as

[Â(z−1)F (z)]+ = zM+1R(z) (11a)

[Â(z−1)F (z)]− = −B̂(z−1), (11b)

where R(z) is some C
1×m-polynomial of degree 2κ − M such

that R(0) = Ψt. As these projections are complementary, we
therefore deduce

Â(z−1)F (z) + B̂(z−1) = zM+1R(z).

Multiplying on the right both sides of this equality by zMQ(z)
yields

A(z)P (z) + B(z)Q(z) = z2M+1R(z)Q(z), (12)

so that R(z)Q(z) must be a scalar polynomial of degree κ−M .
For M = κ, this polynomial reduces to ΨtQ0. This then proves
that the pair {A(z), B(z)} obtained from (10) solves the Bezout
equation (5), where the scaling factor α and the delay ν are given
by α = ΨtQ0 and ν = 2κ + 1.

Remark 1: When Q(z) and P (z) are scalar polynomials, i.e.
when m = l = 1, equation (4) admits the trivial non polynomial
solution Q�(z) = 1/Q(z). F (z) then becomes a rational func-
tion. In this case, Theorem 1 reduces to [10, Theorem 8.8.1] due
to Fuhrmann.

To close this section it is worth to note that the polynomials
A(z) and B(z) solve the Bezout identity with maximal delay.
The polynomials P �(z) and Q�(z) allow one to solve the Bezout
identity with a null delay. Now, the solution Q�(z) of the Bezout
identity (4) may be obtained from (11a). To see this, recall,
from the proof of Theorem 1, that in the exact modelling case,
M = κ, R(z)Q(z) = α reduces to a scalar constant so that
we may identify R(z) = Q�(z). Once equation (10a) is solved,
one can use the obtained solution A(z) to find Q�(z). Indeed,
considering in equation (11a) the coefficients of zk, for k =
M + 2 to 2M + 1, one obtain


F t

M+2 F t
M+3 · · · F t

2M+1
...

... . .
.

0

F t
2M F t

2M+1 · · · ...
F t

2M+1 0 · · · 0





At

M
...

At
1


 = α


Q�t

1
...

Q�t
M




C. Identification of a polynomial matrix

Equations (11) show that A(z) and B(z) depend only from
the coefficients matrices Fi, i = 1, · · · , 2M + 1. Therefore,
with the (pseudo) rational function F (z) its is possible to solve
(5). Then we can re-state Problem 1, with maximal delay ν, in
terms of the identification of F (z) from the observations Y (n).
To this end we claim Lemma 1.

Lemma 1: Let {Y (n)} be the observation sequence obtained
according to model (1) with L = 2m. For convenience we con-
sider the partition of this sequence as

Y (n) =

[
Y1(n)
Y2(n)

]
=

[
P (z)
Q(z)

]
s(n) +

[
W1(n)
W2(n)

]
(13)

If Q(z) is irreducible, then F (z) = P (z)Q�(z) is the transfer
function of the system with input Ỹ2(n) = Y2(n) − W2(n) and
output Y1(n). As Ỹ2(n) is not observable, save in the case
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without noise, F (z) is determined with the solution of the input-
output identification problem

F (z) = arg min
F̂ (z)

E‖Y1(n) − F̂ (z)Y2(n)‖2
2.

Proof: Let

Ỹ2(n)
�
= Y2(n) − W2(n) = Q(z)s(n)

be the noiseless (unobservable) lower block channel’s output as
in (13) and

e(n)
�
= Y1(n) − F̃ (z)Y2(n)

be the identification error. As Q(z) is irreducible we may write

Q�(z)Ỹ2(n) = Q�(z)Q(z)s(n) = s(n).

The vector Y1(n) = P (z)s(n) + W1(n) can be rewritten, using
the above expression for s(n), as

Y1(n) = P (z)Q�(z)Ỹ2(n) + W1(n).

Setting F (z) = P (z)Q�(z) the identification error can be writ-
ten as

e(n) = (F (z) − F̃ (z))Ỹ2(n) − F̃ (z)W2(n) + W1(n).

With the zero mean, independent, identically distributed (iid)
noise hypothesis, we have E{W2(n)W †

2 (n)} = σ2
wI2m, and

the minimization problem becomes

F (z) = arg min
F̂ (z)

{‖[F (z) − F̂ (z)]Ỹ2(n)‖2
2

+ σ2
w(‖F̂ (z)‖2

2 + m)}.
(14)

Minimization of the mean square error (14) can be interpreted
as linear prediction of the received signals at the 1 to m sensors
from the received signals at the m + 1 to 2m sensors. That is,
the system identification F (z) can be interpreted as spatial and
temporal linear prediction problem. The function F (z) can be
determined using adaptive input-output system identification.
In a noisy setting, the corresponding optimization scheme is bi-
ased however. Indeed, from (14) we note a noise enhancement
in the mean squares error. We may mention that an unbiased
estimation can be achieved using (e.g.) a unit-norm constraint
in the minimization problem [9].

III. PROPERTIES-ROBUSTNESS TO ORDER MISMATCH

In this section we describe some important features of the pro-
posed method as concerning uniqueness and order mismatch.

A. Uniqueness

The existence of a solution of (10a), and by consequence of
the Bezout equation (5), is assured by the irreducibility of the
pair of polynomials {P (z), Q(z)}. However, this solution is not
unique even in the sufficient order case. To see this, note that
the block Hankel matrix ΓM+1 in (10a) with dimension m(M +

1)×m(M +1) is singular for M ≥ κ because m ≥ 2. In effect,
Kronecker’s theorem asserts that

rang(ΓM+1) = deg McMillan F (z)
= 2κ + 1 < m(M + 1).

(15)

Let ai(z) =
∑δi

k=1 ai(k)zk where δi
�
= deg ai(z), with i =

1,m and δm+1 = M + 1. When the degrees δi, i = 1,m are
selected with the constraints


∑m

i=1 δi = 2M − m + 1

M = δ1 > δ2 > · · · > δm

equation (5) yields a unique solution for M = κ. This unique
solution can be obtained with (10), by absorbing these con-
straints in the parameterization of the unknown. In another
words, we look for a solution Â of equation (10a) of the form
[AM AM−1 · · ·A0] where

Aj =




[a1(j) a2(j) · · · am(j)] j ≤ δm

[a1(j) · · · ak(j) 0 · · · 0] δk+1 < j ≤ δk

B. Undermodeling

Recall from equation (12) that the channel-equalizer com-
bined response is of the form c(z) = z2M+1r(z), where r(z) =
R(z)Q(z) is a scalar polynomial of degree κ − M . Therefore,
in the undermodeling case, M < κ, this combined response has
exactly κ − M + 1 nonzero terms.

C. Overmodeling

Following the preceding arguments it results that in the over-
modeled case, the channel-equalizer combined response is zero.
Indeed, in this situation the left-hand side of (12) is a polynomial
of degree κ + M + 1 with, by the form of the right hand-side,
2M+1 > κ+M+1 zeros at the origin. This combined response
must then vanish.

IV. LINK WITH SUBSPACE AND LEAST-SQUARES METHODS

Recall that the basic principle of both the subspace and the
least squares blind channel identification is to identify the chan-
nel as the kernel of a certain operator. Each method corresponds
to a specific choice of the operator though the later is obtained
in both cases by exploiting the subspace structure of the obser-
vation data [1]. In this section, we show that our method can
be cast into this framework. Moreover, in the same way this
principle allows one to identify the channel, it also allows us to
identify directly the solutions P �(z) and Q�(z) of the Bezout
identities P �(z)P (z) = 1 and Q�(z)Q(z) = 1 respectively.

To specify the operator in the proposed approach let us sup-
pose that P (z) is also irreducible, such that there exist a C

1×m-
polynomial P �(z) satisfying

P �(z)P (z) = 1, with deg P �(z) ≤ κ.

Setting S(z) = Q(z)P �(z) we have the equalities

F (z)S(z) = P (z)P �(z)
�
= T (z)
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and
S(z)F (z) = Q(z)Q�(z)

�
= T̃ (z).

It is worth to note that S(z) can be found in exactly the same
way as for F (z), by solving a classical input-output identif-
ication problem (with a unit norm constraint to avoid a possible
bias).

It is straightforward to verify that if Φ(z) and Φ̃(z) are two
C

m-polynomials, then

[Im − T (z)]Φ(z) = 0m ⇐⇒ Φ(z) = γ(z)P (z) (16)

and

[Im − T̃ (z)]Φ̃(z) = 0m ⇐⇒ Φ̃(z) = γ̃(z)Q(z) (17)

where γ(z) and γ̃(z) are some scalar polynomials, depending on
the degrees of Φ(z) and Φ̃(z), respectively. The scalar polyno-
mial γ(z) reduces to a constant if, and only if, the degree of Φ(z)
is equal to that of P (z), in which case, we get Φ(z) = α0P (z)
for some constant α0. The same holds true for γ̃(z).

We may quote that the matrix [Im−T (z)], respectively [Im−
T̃ (z)], is the orthogonal projection operator on the rational sub-
space spanned by the polynomial P (z), respectively Q(z).

Observe that, if we rather consider the left kernel of [Im −
T (z)], respectively [Im − T̃ (z)], we obtain the following rela-
tions

Φ�(z)[Im − T (z)] = 0m ⇐⇒ Φ�(z) = γ(z)P �(z) (18)

and

Φ̃�(z)[Im − T̃ (z)] = 0m ⇐⇒ Φ̃�(z) = γ̃(z)Q�(z) (19)

where γ(z) and γ̃(z) are some scalar polynomials. This
shows that one may obtain directly the equalizers using the same
principle of the classical (subspace, least squares) second order
methods.

As concerning the implementation, the polynomials Φ(z),
Φ�(z), Φ̃(z) and Φ̃�(z) can be obtained in a close form from
optimizing a quadratic cost function

�̂h = arg min
h̃∈S

h̃H K h̃,

where S is a set that specifies the domain of �h and K is charac-
teristic to the kernel under consideration. Usually �h is subject
to some constraint as ||�h|| = 1 to rule out the trivial zero so-
lution. However these methods may not be robust against mod-
elling errors especially when the channel matrix is close to being
singular or when there is a poor SNR.

V. THE ALGORITHM AND SIMULATION EXAMPLES

In this section we present some computer simulations to ver-
ify the properties of the proposed approach presented hitherto.

The different steps to compute a solution of Problem 1 are
outlined below:

1) Estimation of F (z) with the adaptive FIR system identif-
ication where Y2(n) is the input and Y1(n) is the output.

2) Estimation of the order κ e.g. using SVD of the block Han-
kel matrix ΓM+1 (generic to all second order methods).

3) Find the polynomials A(z) and B(z) with (10a) followed by
(10b).

4) Equalization: s̃(n) = A(z)Y1(n) + B(z)Y2(n).

Such an algorithm has been used to perform some simulations.
We considered the input s to the channel as an i.i.d. binary
source sequence with variance σ2

s = 1. The number of (virtual)
subchannels has been set to L = 4. The channel coefficients
considered here are listed in Table I.

Table I - Channel coefficients
h0 h1 h2 h3 h4 h5

-0.692 -1.441 0.816 1.191 -1.604 -0.805

0.858 0.571 0.712 -1.202 0.257 0.529

1.254 -0.400 1.290 -0.020 -1.056 0.219

-1.594 0.690 0.669 -0.157 1.415 -0.922

In the first simulation we have considered noisy observations,
with a signal to noise ratio of SNR = 20dB and have sup-
posed that the channel order was correctly estimated (M = 4).
The classical recursive least squares algorithm was used in the
identification of the polynomial matrix F (z), without any con-
straint in the norm of this matrix. Figure 2 shows the combined
response obtained by solving Problem 1 for a maximum delay,
following steps 1 to 3 above. In Figure 3, we display the com-
bined response corresponding to Bezout identity (4). It is worth
noting that we were able to solve the Bezout identity in a blind
setting even in a noisy environment and without any constraint
to monitor the bias in the estimation of F (z).

Finally, we verify in Figure 4, the undermodeling properties
of the proposed approach as quoted in Section 3. In this exper-
iment, the equalizer order was set to M = 2. As expected, the
number of nonzero terms in the combined response is exactly
κ + 1 − M = 3.

0 2 4 6 8 10 12
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
combined response

Fig. 2. Combined response with SNR = 20dB and with maximal delay.
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Fig. 3. Combined response with SNR = 20dB and with null delay.
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Fig. 4. Combined response without noise and M = 2.

VI. CONCLUDING REMARKS

We have proposed a polynomial approach to solve the Bezout
identity underlying the equalization of a single-input multiple-
output channel, in a blind environment. The approach allows
one to solve this identity with a maximum and/or a minimum
delay.

It must be mentioned that the equalizer polynomials that sat-
isfy the Bezout equation correspond to a Zero Forcing (ZF)
equalizer. As it is well known, the ZF equalizer tends to per-
form poorly when the channel noise is significant and when the
channel H(z) approaches the boundary of the minimum phase
domain. Therefore, the use of unit-norm constraints in the esti-
mation of F (z) to reduce the effect of noise and a robust resolu-
tion of equation (10a) by exploiting the displacement structure
of the block Hankel matrix are under study.
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