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Abstract— In subspace-based blind linear multiuser detection we may
use a subspace tracking algorithm and a blind method for estimating the
composite code vector, which is the convolution of the user code and the
multipath channel.

In this paper we propose two subspace tracking algorithms based on the
Power method, one with

���������
	
and the other with

�������
	
operations

per update (where
�

is the dimension of sampled received signal and
�

is
the rank of the estimated subspace). We also propose a blind method for
estimating the composite code vector, which uses the estimated signal sub-
space bases. This method requires

����� � ��	
operations per update (consid-

ering that
�

is larger than the number of multipath gains).
The proposed algorithms are suitable for subspace-based blind linear

multiuser detectors for DS-CDMA system downlink. Computer simulations
show superior performance of the methods proposed in comparison with
other methods presented in the literature.

I. INTRODUCTION

It has been demonstrated that multiuser detection provides
substantial performance gain over conventional detection tech-
niques used in multiple-access channels. The multiuser detec-
tors with optimal-performance was first presented in [1]. As its
implementation presents high computational complexity and it
is necessary to know the channels and the codes of all users,
several sub-optimal solutions have been proposed [2], [3].

Subspace-based blind multiuser linear MMSE detectors (S-
MMSE) [3] are suitable for downlink communication in direct-
sequence code-division multiple-access (DS-CDMA) systems.
It can demodulate the desired-user signal with only prior knowl-
edge of his own code and synchronization at chip level.

The S-MMSE detectors use the bases of the space spanned
by the covariance matrix of the received signal to implement
a Wiener filter that estimates the desired-user symbol from the
received signal.

Our implementation of the S-MMSE detector uses a sub-
space tracking algorithm to identify the signal subspace compo-
nents and a blind adaptive method for estimating the composite
code, which is the convolution of the channel and the user code.
This implementation of the S-MMSE employs only one antenna
(single-channel detector) as opposed to multichannel detectors
which employ multiple antennas. Single-channel detectors are
more interesting for the donwlink, because they are, usually, less
complex, cheaper and smaller.

Due to the capacity and flexibility requirements for future
communications systems, the S-MMSE detectors are among
those technologies considered to be used in the future.
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We propose novel low-complexity S-MMSE detectors for
DS-CDMA systems. We develop new subspace tracking adap-
tive algorithms based on the Power method [4], one with�����������

and another with
���������

operations per update, where�
is the dimension of sampled received signal and

�
is the rank

of the estimated subspace. We also propose a new method to
estimate the composite code with complexity

�����������
, consid-

ering that
�

is larger than the number of multipath gains.
In spite of the application chosen herein (DS-CDMA mul-

tiuser detection), there are several other classical problems
where the proposed algorithms could be used, such as data com-
pression and filtering, system identification and pattern recogni-
tion.

This paper is organized as follows. In section II the signal
model is introduced. In section III reduced-rank blind linear
MMSE multiuser detectors are reviewed. In section IV we in-
troduce novel subspace tracking algorithms. In section V we
propose a new approach for estimating the composite code. In
section VI we describe our proposed subspace-based blind de-
tectors that combine the subspace tracking algorithms and the
method for estimating the composite code introduced in sections
V and VI. In section VII the performance of these proposed
methods are evaluated in a subspace-based blind linear MMSE
detection scheme and compared to other methods presented in
the literature. Section VIII contains the conclusions.

II. SIGNAL MODEL

In a synchronous DS-CDMA system scenario with � users,
the received signal in a downlink channel, after the chip rate
sampling at � �"!$# forms an

�
-vector for every symbol interval� ! # , given by

%'& (*)+-,/.�0 +213+ (546 ,7.98 6�: +<; 6�=?>& ( ) +-,/.�0 + 1 +"@<+ =A>CB (1)

where 0 +
is the power of user D ,

1 +FEHGJI � B-= �LK is the binary
independent and equiprobable data of user D ,

G 8 6 K 46 ,/. are mul-
tipath gains and M is the number of paths. Vector > is a com-
plex Gaussian noise vector with mean N and covariance matrixO �<P3Q 1, : +<; 6 is the user code delayed by R2!$# , such that

: +<; . & � � �TS ����UWV +X V +.ZY[Y[Y B V +Q�\ .�]_^ (2)

is the code vector of user D , and
@ +

is the received composite
code vector also for user D given by@"+ &5(`46 ,7.98 6 : +"; 6 &`a + b Y (3)cedgf

denotesthe
�ih��

identitymatrix
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In equation (3) a +
is the transmitted code matrix and

b
is the

channel vector, given, respectively, by

a + &�� : +<; . : +"; � Y_Y�Y : +<; 4�� Q�� 4
&

��������
V +X 	 Y�Y_Y 	V +. V +X Y�Y_Y 	
V +� V +. . . . 	
...

...V +Q�\ . V +Q�\ � Y�Y_Y V +Q \�
 4 \ .
�
���������

and b &�� 8 . 8 � Y_Y�Y 8 4 � ^ 4 � . Y
In this model the composite code vector has the same dimen-

sion of the code vector. It neglects intersymbol interference (ISI)
between data symbols to avoid changing the dimension of the
vectors for different number of multipath gains.

An alternative model is used in [2], where the composite code
vector has a larger dimension due to the convolution of the code
vector with the channel. Computational complexity require-
ments with this augmented model are higher than that for our
model and, in addition, simulations have shown that the rela-
tive performance of the algorithms is the same regardless of the
model used.

Extension of the results presented herein for asynchronous
DS-CDMA system models should also be possible. In [5] it was
shown that continuous asynchronous DS-CDMA system models
can be reduced to equivalent digital synchronous system models.
Therefore the results of this paper should apply to this context
as well.

The received signal is assumed ciclostationary, so its statisti-
cal properties do not change on time intervals of duration ! and
the sequence

G % K is stationary.
Throughout this work ��� ��� , � ��� � � and � G ��� � K denote transpose

complex conjugate, norm and expected value of ��� � , respectively.
Furthermore, the functions ����� � ��� � � and ��� G ��� � K return the sign
and the real part of ��� � , respectively.

A. Subspace Concept
The correlation matrix of the received signal is defined as & � G %<% � K and its eigendecomposition (ED) is given by & !#"$! � & U !#%&!#' ])( "*% "$',+ ( ! � %! �' +

Matrix " % is formed by the - largest eigenvalues of
 

, . .0/. � Y_Y�Y / .21 , corresponding to the orthonormal eigenvectors
of !#% &3� 4 . 4 � Y[Y[Y 4 1 � , and matrix "*' is formed by

� I -
real eigenvalues equal to O � corresponding to the orthonormal
eigenvectors of ! ' &�� 4 165 . Y[Y Y 4 Q � .

Matrix
 

can be rewritten as & . . 4 . 4 � . =87 B (4)

where 7 & 19 :
, � . : 4 : 4 �: =

Q9:
, 165 . O � 4

: 4 �:
&  I . . 4 . 4 � .&  I 4 . � 4 � .  4 . � 4 � . B (5)

is a reduced-rank approximation of
 

.
Matrix 7 can also be obtained using the deflation technique

[6]. This technique consists in removing the projection of the
vector % on 4 . , i.e.,

% � &i% I 4 . 4 � . % B (6)

since the eigenvectors are orthonormal. It can be verified that7 & � G % � % �� K .

III. SUBSPACE-BASED BLIND LINEAR MULTIUSER MMSE
DETECTORS

For simplicity, denote ; + =
G 0 + 1 + K ) +-,/. . The problem at hand

is to estimate ; + from the received signal % assuming prior
knowledge of only the composite code

@ +
.

Let <; + be the estimate of ; + , and the symbol transmitted by
user D be calculated as<1_+ & ���=� � �>� G <; + K � Y (7)

The constrained optimal linear estimator of ; + is a vector ?
which minimizes the mean-squared-error (MSE) function given
by @ � ? � & � G � ; + I ? � % � � K B (8)

subjected to ? � @ + & � . The solution of this constrained mini-
mization problem is ? +

, given by [3]? + & .ACBD�EGFIHKJ=LF E BF A D !M%N" \ .% ! � % @ + Y (9)

Since
@ +

is orthogonal to the noise subspace, ! �' @ + & 	 , we
could express ? +

using only the signal subspace parametersG ! % B " % K .
Minimizing the MSE is equivalent to maximizing the signal-

to-interference-plus-noise-ratio (SINR), because the transmit-
ted symbols are assumed independent. In spite of the bit error
rate (BER) being the performance measurement of interest, the
SINR is more easily calculated and is more convenient to com-
pare linear detectors. Moreover, in certain conditions the SINR
is a good predictor of the BER [7].

The principal characteristic of the S-MMSE detectors is that
the algorithm estimates the subspace parameters in order to con-
struct the filter ? +

in its closed form.
In order to implement reduced-rank S-MMSE detectors it is

necessary:O
to estimate the signal subspace parameters

G !0% B "*% K . These
parameters can be estimated using traditional methods such as:
ED and SVD decompositions [4], or with subspace tracking
adaptive algorithms [4], [6], [8], [9], that have lower compu-
tational complexity;O

to estimate the signal subspace rank [3]. This avoids the esti-
mation of noise subspace bases, that are unnecessary;O

to estimate the composite code
@ +

. This parameter can be
estimated using only the code of the user of interest and the
signal subspace bases [2], [3].

IV. SUBSPACE-TRACKING ALGORITHMS

We propose novel algorithms to estimate the bases of the
subspace spanned by the autocorrelation matrix of a vector se-
quence to be used in S-MMSE detectors. In the context of signal
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detection, we will use a sequence of vectors % from our model
of DS-CDMA systems.

The class of algorithms proposed here is based on the Power
method, but differently from other similar algorithms also based
on the Power method, like the Natural Power method [10], the
proposed algorithms estimate only one principal eigenvector of
a reduced-rank estimate of the correlation matrix.

In the next sections we will derive and present the two algo-
rithms suitable for subspace tracking, namely, Sequential Power
Algorithm versions one and two.

A. Sequential Power Algorithm: Version � (SP1)

The estimated correlation matrix of % is obtained recursively
with  � � � &��  � � I � � = % � � � % � � � � B (10)

where � is a constant
E � 	 B � � called forgetting factor and % � � � is

the � th received vector. This is a rank-1 updating version of an
exponentially weighted sample correlation matrix suitable for
nonstationary scenarios.

Define matrices 7 . � � � &  � � � and 7 : 5 . � � � as a reduced-
rank approximation of 7 : � � � given by (see equation (5))7 : 5 . � � � & 7 : � � � I���� �: � � � 7 : � � � � : � � ��� � : � � � � �: � � �& 7 : � � � I <. : � � � � : � � � � �: � � � B
where

� : � � � and <. : � � � are, respectively, estimates of the prin-
cipal eigenvector and the principal eigenvalue of 7 : � � � . Define
also the matrix� � � � & � � . � � � � � � � � Y_Y�Y �
	 � � � � Q�� 	 B
If
� & - this matrix is an estimate of !0% .
The Power method is used to estimate the principal eigenvec-

tor of 7 : � � � , so ���: � � � & 7 : � � � � : � � I � �� : � � � & ���: � � � � � ���: � � � � Y (11)

Considering that the vectors
G�� �: � � � K 	: ,7. are orthogonal and

vary slowly with � , the estimate of the eigenvalue can be ob-
tained as � � �: � � � � � & � �: � � � � � �: � � � (12)

because���: � � � � ���: � � � & ���: � � I � � � 7 �: � � � ���: � � I � �
 � �: � � � � 7 �: � � � � �: � � � & <. �: � � � Y
The algorithm SP1 is summarized below:

SP1

Choose� ���3	 and 
���� ���3	 ������ c suitably������� �"!$#&%'#�()(�(+*,�� �-� 	 � . c � �-�,/�! 	10�2_��� 	32��-� 	345� c ��� 	 � � ��� 	������67�"!$#&%8(�()(9# �:*,���;� ��� 	 � 5�<� �-� 	 ��� ���,/
! 	=> � �-� 	 � ? ��;� �-� 	@?��� ��� 	 � ��;� �-� 	3A => � �-� 	5�B��C c �-� 	D� 5�<� �-� 	E/ => � �-� 	 ��� ��� 	 ��� �-� 	34

The algorithm SP1 requires
�3F2� � =:G ���g� =:H � �

real arit-
metic operations per update of

� � � � .
As the algorithm SP1 uses the Power method to obtain <. : � � � ,

the convergence rate of each
� : � � � is governed by the ratio of

the two largest eigenvalues of 7 : � � � [4].
The Natural Power algorithms proposed in [10], that are also

based on the Power method, are different implementations of the
following equation:� � � � &  � � � � � � I � �I � � � I � � �  � � � � � � � I � �

Y (13)

These algorithms are natural extensions of the Power method to
estimate matrices of eigenvectors.

B. Sequential Power Algorithm: Version 2 (SP2)

A second, and less computationally demanding version of the
sequential Power algorithm can be derived as follows:

Notice that� �: � � � & 7 : � � � � �: � � I � �& � 7 : � � I � � � �
: � � I � � =%

: � � � % : � � � � � �: � � I � � Y
Thus, using the approximation7 : � � I � � ���

: � � I � � 
7 : � � I � � ���
: � � I G � & ���: � � I � � (14)

the vector
�J�: � � � can be obtained as:� �: � � � &�� � �: � � I � � = %

: � � � % : � � � � � �: � � I � � Y (15)

Similarly, notice that<. : � � � & � : � � � � 7 : � � � � : � � �& � � : � � � � 7 : � � I � � �
: � � � =� : � � � � % : � � � % : � � � � � : � � � Y (16)

Thus, using the approximation� : � � � � 7 : � � I � � �
: � � � 
� : � � I � � � 7 : � � I � � �

: � � I � � & <. : � � I � � B (17)<. : � � � can be obtained as:<. : � � � &K� <. : � � I � � = �
: � � � � % : � � � % : � � � � � : � � � Y (18)

In order to estimate
� : 5 . � � � we must remove the projection

of %
: � � � along the direction of

� : � � � forming %
: 5 . � � � , where% . � � � &5% � � � . This process is repeated until

�
eigenvectors are

estimated.
The algorithm SP2 is summarized bellow:

SP2

Choose
���� ���3	 � ���� c and 
 5> � ���3	 � ��-� c suitably�������L�M!$#N%'#�()(�(O*,�2 c �-� 	 � 2��-� 	������6P�Q!$#R%�(�()(9#��:* �S �-� 	 � 2 � �-� 	 4 ��� ���,/
! 	� ;� �-� 	 � . � ;� �-� /�! 	90 S �-� 	T2 � �-� 	=> � ��� 	 � . => � ��� /
! 	90 S � ��� 	��� �-� 	 � � ;� �-� 	3A => � ��� 	2 �-C c ��� 	U� 2 � �-� 	V/ ��� �-� 	 ��� ��� 	 4 2 � �-� 	
This algorithm requires

� � 	 � =:G �g� & ���������
real aritmetic

operations per update of

� � � � .
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V. CHANNEL AND COMPOSITE CODE ESTIMATION

In this section we propose a subspace-based blind method to
estimate the multipath gains and we use this to estimate the com-
posite code, which is needed in S-MMSE detector.

This method works as follows: the multipath gains are esti-
mated minimizing a projection of a vector in the noise subspace.
Then these gains are used to construct the estimated composite
code.

Let 7@ + and 7b be estimates of
@ +

and
b

, respectively. These
estimates are related according to7@ + &`a + 7b Y (19)

The proposed method consists in adapting vector 7b to mini-
mize the projection of 7@ + in the noise subspace. In other words
we wish to minimize� � 7@<+ � & � 7@"+ I ! % ! � % 7@"+ � �& ��� � 7@"+ 7@ � + I 7@ � + ! % ! � % 7@<+ � Y (20)

Substituting 7@ + by equation (19), we obtain� � 7b � & ��� � 7b � a � + a + 7bFI 7b � a � + !M%N! �% a + 7b � Y (21)

In this work we wish to minimize

� � 7b � in (21) subjected to the
constraint that � 7b � & � . Note that the channel estimate has
an arbitrary phase ambiguity, as any other subspace-based blind
method also has, which can be easily solved by differentially
encoding and decoding the data symbols [3].

Equation (21) is similar to that used in methods derived from
the algorithm MUSIC [11] when we substitute !M' ! �' by

P3Q I! % ! � % .
The gradient of the function

�
. � 7b � with respect to 7b is given

by

� � . � 7b � & G � a � + a +�I a � + ! % ! � % a + � 7b& G a � + � P3Q I !M%N! �% � a + 7b Y (22)

Our proposed method for composite code estimation, called
herein Code Projection (CP) method, is described below. It is
based on the steepest descent method to obtain iteratively an es-
timate 7b of the multipath gains of the channel. The method uses
the signal subspace bases that have been obtained previously
with algorithms SP1 or SP2 presented in the previous section.

CP

Choose
5� ���3	

suitably������� �"!$#&%'#�()(�(+*,�� �-� 	 �
Estimateof �	� at iteration

���
 �-� 	D� d f /�� �-� 	
� 4 �-� 	5� ; ��� 	 � 5� �-� /
! 	V/ %���� 4� ��
 ��� 	R5� ; � �-� /�! 	5� �-� 	 � 5� ; ��� 	&A'? 5� ; ��� 	)?5� ; �L�-� 	 � � � 5� �-� 	5� � �-� 	 � 5� ; �L�-� 	3A'?�5� ; �L��� 	)?
The constant � is the convergence factor, and the vectors 7b � � �

and 7@ + � � � are the estimates of
b � � � and

@ + � � � at the iteration � ,
respectively.

The number of real aritmetic operations required per update
by the method CP is

� G ��� = G � = F M = � �e� = F M .

VI. SUBSPACE-BASED BLIND LINEAR MULTIUSER MMSE
DETECTORS

Subspace-based blind linear multiuser MMSE detectors can
be proposed by combining the method CP and any of two al-
gorithms presented in section IV to estimate the bases of the
signal subspace. The choice between the two alternatives de-
pends on the acceptable computational complexity and on the
performance requirements. Henceforth the detector that uses al-
gorithm SP1 will be called S-MMSE-SP1, and the detector that
uses algorithm SP2 will be called S-MMSE-SP2. The rank of
the signal subspace can be estimated in an adaptive way based
on estimated eigenvalues [3], but here we assume that the num-
ber of active users is known. In the next section we compare the
performance of these detectors with other methods proposed in
the literature.

VII. SIMULATIONS
A. Performance Comparison of Subspace Tracking Algorithms

This simulation compares the algorithms SP1 and SP2 with
the RO-FST algorithm [9] used in the S-MMSE detector pro-
posed in [2], and with the algorithm PASTd used in the S-
MMSE detector proposed in [8]. Algorithms RO-FST and
PASTd require

���������
operations per update.

Example 1: We assumed a synchronous DS-CDMA system
that uses Hadamard sequences with

� & ��� and the channel
modeled as a tapped delay line with M & H and impulse response
given by
8 . � � � & I 	 Y G 	 ����� � � � = 	 Y � � H1H � � � I � � = 	 Y G ������� � � I G � Y

There were � independent users ( � & � ) with the same signal
to noise ratio

��� � � � & H 	���� , i.e.,
G 0 � + � O � & � 	 	 	 K ) +3,7. .

The performance measurement utilized was the distance [4]
between the subspace spanned by

� � � � obtained with the algo-
rithms SP1, SP2, RO-FST and PASTd and the subspace spanned
by !#% , estimated offline from the SVD of � � � & �� '9 :

,/. % � � � % � � � � (23)

after � & � G 	 	 	 received vectors.
The forgetting factors used in algorithms SP1 and SP2 were� . & 	 Y ��� � � and � � & 	 Y � � � , respectively. For the algorithm

RO-FST we used forgetting factors equal to �"!�& 	 Y ��� � � and� ! & 	 Y ��� � , and for the algorithm PASTd we used forgetting
factor �$#�& 	 Y ��� � .

The algorithms were initialized with 7 � 	 � & P Q
,
� & � and� � 	 � formed by the first

�
columns of

P Q
.

Figure 1 presents an average over G 	 	 simulations of the mea-
sured distances. Observe that the subspace estimate provided by
the algorithm SP1 was closer to the true subspace and converged
faster. The algorithms SP2 and PASTd presented almost the
same performance and the algorithm RO-FST with � ! & 	 Y � ��� �
presented slightly better performance than both, but still inferior
to that of the algorithm SP1.

The columns of the matrix

� � � � obtained with the PASTd al-
gorithm are not normalized, what can be a disadvantage in some
applications. Which can be disadvantage of the FST algorithm
is that it does not estimate the eigenvalues.

The convergence rate of the algorithm RO-FST with �"! &	 Y ��� � � was slow. When the forgetting factor was reduced to
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� ! & 	 Y ��� � , the convergence rate improved, but at the expense
of much larger distance from the optimum.
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Fig. 1. Distancebetweenthe subspacespannedby � � and the subspace
spannedby

� ��� 	
obtainedusing the algorithms SP1, SP2, RO-FST and

PASTd.

Example 2: In this example we compare the algorithms when
the channel changes abruptly. The channel was

8 � � � � & 	 Y � H � � � � = 	 Y G ��� � � I � � I 	 B �"� � � I G �
for � ��� 	 	 	 and was switched to the same channel 8 . � � � used
in example � above for ��� � 	 	 	 .

The initial conditions were the same as those used in exam-
ple 1. The forgetting factors � . & 	 Y ����� H , � � & � # & 	 Y ��� �
and � !�& 	 Y ����� � were set to make the distance obtained with all
algorithms very close when � & � 	 	 	 .

Figure 2 presents an average over G 	 	 simulations of the dis-
tance measurements. We can observe again the superior perfor-
mance of the algorithm SP1. The distance achieved was smaller
than those achieved by the other algorithms.
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����
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.

B. Performance Comparison of Composite Code Estimators

We compared the method CP with the subspace-based blind
methods for estimating the composite code used in [3], called

Eq-Wang, and the method used in [2], called Eq-Song. The
method Eq-Song was derived using the the alternative model
described in section I. Methods Eq-Song and Eq-Wang require�����������

operations per update.
For the same DS-CDMA system of simulation 1 and chan-

nel 8 . � � � , we wanted to estimate the composite code of user 1
using the methods CP, Eq-Wang and Eq-Song. The subspace
bases were estimated with the algorithm SP1 and the perfor-
mance measurement was the MSE between the true composite
code and the � th estimated composite code, given by

� � � � & � @".�I 7@ . � � � � � Y (24)

The constants
� & � and �A& 	 Y � ��� � and the initial condi-

tions used in the algorithm SP1 were maintained from the pre-
vious simulation. For the method CP we used � & 	 Y 	 G , for the
Eq-Wang method we used � & 	 Y G and � & � . It is not neces-
sary to use any convergence factor in the Eq-Song method, for
the Power method is used to find the maximal eigenvector of a
matrix.

All the elements of the initial condition vectors used in meth-
ods CP and Eq-Wang were equal to 	 Y 	 	 � and we used the code
of the user of interest for the initial conditions on method Eq-
Song.

Figure 3 presents an average over G 	 	 simulations of the
� � � �

for these H methods. We can observe that the Eq-Song method
converges faster than the others. Is is because the choice of the
initial conditions and the use of the Power method for optimiza-
tion, but the estimation was not as good as the others after con-
vergence. The CP and Eq-Wang methods presented almost the
same steady state performance, but the CP method converged
faster.
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Fig. 3. MSE betweenthecompositecodevectorandtheestimatedcodevector
obtainedwith methodsCP, Eq-WangandEq-Song.The channelis � c �
	�	 and
thebasesareestimatedwith thealgorithmSP1.

The method CP has shown a good compromise between con-
vergence speed, accuracy of the estimate and computational
complexity. Although all three methods require

����� �<���
com-

putational complexity per update (considering
� / M ), the num-

ber of adapted parameters in the method CP does not change
with the size of the code, and this is an important advantage
when the user codes are increased.
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C. Performance Comparison of S-MMSE detectors

We compared the detectors S-MMSE-SP1 and S-MMSE-SP2
with the S-MMSE detector proposed in [3], called S-MMSE-
Wang and with an approximation of the S-MMSE detector pro-
posed in [2], called S-MMSE-Song.

The detector S-MMSE-Wang uses the PASTd algorithm for
subspace tracking and the Eq-Wang method for composite code
estimation, and the detector S-MMSE-Song uses the RO-FST
algorithm for subspace tracking and the Eq-Song method for
composite code estimation.

We wanted to recover � & � 	 	 	 transmitted data symbols
transmitted by the user 1 in the same DS-CDMA system of sim-
ulation 1 and channel 8 . � � � .

All initial conditions, constants and convergence factors were
the same as in the previous simulations, except the convergence
factor used in the method Eq-Wang that we had to reduce to� & 	 Y 	 � , because the PASTd algorithm used in the S-MMSE-
Wang detector was slower than the algorithm SP1. In simulation
2 we used the method Eq-Wang with the estimated bases given
by the algorithm SP1.

The performance measurements is the approximated SINR,
given by

���2� � � � � & �� � � �g�.Q��3\ . � ( Q��: ,7.�� ? � .-; : � � � % : � � � I �� � � � � � � B
where

�� � � � & ��	�
Q��9 :
,7. � ? � .-; : � � � % : � � � � B? .-;

: � � � is the filter ? .
of 
 th repetition in iteration � and

� �
is

the number of repetitions done for each experiment.
Figure 4 presents the

���2� � � � � with
� �`& H 	 	 . Notice

the superior performance of the S-MMSE-SP1 as compared to
the other detectors tested. The detector S-MMSE-SP2 provided
similar performance as compared to the detector S-MMSE-
Wang.

Although the computational complexity of the algorithm SP1
is
����� � ���

and the algorithm SP2, PASTd and RO-FST require
only

���������
, all detectors require

����� �_���
operations per up-

date. Notice that the computational requirements for the sub-
space tracking algorithm and the composite code estimator are
used in tandem to implement the filter ? +

.

VIII. CONCLUSION

We proposed two low complexity algorithms to estimate the
bases of the subspace spanned by the autocorrelation matrix of a
vector sequence and a blind subspace-based method to estimate
the composite code to be used in subspace-based blind multiuser
linear detection. In all simulations the proposed algorithm SP1
for subspace tracking and method CP for composite code es-
timation outperformed the others and showed a good trade off
between performance and complexity.

To evaluate all methods proposed, we used them in S-MMSE
detectors and compared with others described in the literature.
The performance gainned by using a better subspace tracking
algorithm, like algorithm SP1, in the detection was substantial.
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Fig. 4. �
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The proposed detector has a computational complexity compa-
rable to that of other detectors known in the literature, converges
faster and to a higter SINR.
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