Mean-Sguared Analysis of the Partial-Update
NLMS Algorithm

Stefan Werner, Marcello L. R. de Campos, and Paulo S. R. Diniz

Helsinki University of Technology, Universidade Federal de Rio de Janeiro

Abstract—n this paper, we present mean-squared convergence analy-
sisfor the partial-update normalized least-mean square (PU-NLM S) algo-
rithm with closed-form expressions for the case of whiteinput signals. The
analysisused order statistics and the formulas presented here are more ac-
curate than the ones found in the literature for the PU-NLM S algorithm.
Simulation results shows excellent agreement with the results predicted by
the analysis of the PU-NLM S algorithm.

I. INTRODUCTION

HEN implementing an adaptive-filtering algorithm, the

affordable number of coefficients that can be used will
depend on the application in question, the adaptation algorithm,
and the hardware chosen for implementation. With the choice
of algorithms ranging from the simple least-mean square (LMS)
algorithm to the more complex recursive least squares (RLS) al-
gorithm, tradeoffs between performance criteria such as, e.g.,
computational complexity and convergence rate, have to be
made. In certain applications, the use of the RLS algorithm
is prohibitive due to the high computational complexity and in
such cases we must resort to simpler algorithms. As an example,
consider the acoustic echo cancellation application where the
adaptive filter may require thousands of coefficients [1]. This
large number of filter coefficients may impair even the imple-
mentation of low computational complexity algorithms, such as
the normalized least-mean square (NLMS) algorithm [1]. As an
alternative, instead of reducing filter order, one may choose to
update only part of the filter coefficient vector at each time in-
stant. Such algorithms, referred to as partial-update (PU) algo-
rithms, can reduce computational complexity while performing
close to their full-update counterparts in terms of convergence
rate and final mean-squared error (MSE). In the literature one
can find several variants of the LMS and the NLMS algorithms
with partial updates [2]-[8], as well as more computationally
complex variants based on the affine projection algorithm [9],
[8].

The objective of this paper is to analyze one particular case
of the partial-update NLMS (PU-NLMS) algorithm introduced
in [9], [8] that obeys the principle of minimum disturbance [9],
[8]. The results from our analysis, which is based on order
statistics, yield more accurate bounds on step size and on the
prediction of excess MSE when compared to the results pre-
sented in [9], [8]. We also clarify the relationship between the
PU-NLMS and M-Max NLMS [3], [4] algorithms, whereby we
show that the M-Max NLMS algorithm uses an instantaneous
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estimate of the step size that achieves the fastest convergence in
the MSE.

Il. THE PARTIAL-UPDATE NLMS ALGORITHM

This section reviews the partial-update NLMS (PU-NLMS)
algorithm proposed in [9], [8]. The approach taken here is
slightly different from that in [9], [8], but the final algorithm
is the same as the one that satisfies the minimum disturbance
criterion. We also provide analysis in the mean-squared sense
with new bounds on the step size to be used in the PU-NLMS
algorithm that are more accurate than the one given in [9], [8].

The objective in PU adaptation is to derive an algorithm that
only updates L out of the N + 1 filter coefficients. Let the L
coefficients to be updated at time instant & be specified by an in-
dex set Zp, (k) = {io(k), ,. .., ir—1(k)} with {i;(k)} 7= taken
from the set {0, ..., N}. Note that Z (k) depends on the time
instant k. As a consequence, the L coefficients to be updated
can change between consecutive time instants. A question that
naturally arises is “Which L coefficients should be updated?”
The answer to this question can be related to the optimization
criterion chosen for the algorithm derivation.

In the conventional NLMS algorithm, the new coefficient
vector can be obtained as the vector w4 that minimizes the
Euclidean distance ||wj1 — wy||? subject to the constraint of
zero a posteriori error. Applying the same idea for the par-
tial update of vector wy,, we take the updated vector w1 as
the vector minimizing the Euclidean distance ||wj1 — w2
subject to the constraint of zero a posteriorierror with the ad-
ditional constaint of updatingonly L coeficients.For this pur-
pose, we introduce the diagonal matrix Az, ,, having L ele-
ments equal to one in the positions indicated by Zp,) and ze-
ros elsewhere. Defining the complementary matrix AZW) =
I— Az, willgive Az, , Wiy = Az, Wy, which means
that only L coefficients are updated. Assuming a sequence of in-
put vectors {x; } 2, and a sequence of desired signals {dx }32,,
we can write the sequence of output errors {e; } 32, as

€ = dk - WTXk

where x; and w € RVt and d;, and e, € R. With this
notation the optimization criterion for the partial update can be
formulated as

Wiy1 = min ||w — wy||? subject to
xw = dy )
AIL(JC) (W - wk) =0

Applying the method of Lagrange multipliers onto the objec-
tive function f(w, A1, A2) = [|[w — wi|> + A1 (dp — x[w) +



M Az, (1) (W —wy) where \; is a scalar and Az is an (N +
1) x 1 vector, gives

e A1y (k) Xk
||AIL(k)xk ”2

()

Wgi1 = Wi +

We see from (2) that only the coefficients of wy, indicated by the
index set Zp, (k) are updated, whereas the remaining coefficients
are not changed from iteration £ to iteration k + 1.

We now concentrate on the choice of the index set Zr,(k).
Substituting the recursions in (2) into (1) we get the Euclidean
distance as
CHll =
E k = Wk+1 — Wi [ | —

||AIL(k)Xk||2

For a given value of 7, we can conclude that E(k) achieves its
minimum when [|Az, ., x| is maximized. In other words, we
should update the L coefficients of wy, related to the elements
of x; with the largest norm.

In order to control stability, convergence speed, and error in
the mean-squared sense a step size is required, leading to the
following final recursion for the PU-NLMS algorithm

ex Az, Xk

||AIL()c)Xk||2

3)

Wii1 = Wi + 4

The bound on the step size is given by (see Appendix I)

2 2E [72]
O<pu< =
E H (N +1)02

where 7} has the same probability distribution as [| Az, ., x|,
and rZ has the same probability distribution as ||x ||, which in
this particular case is a sample of an independent process with
chi-distribution with (N + 1) degrees of freedom, E [r?] =
(N + 1)o2. For given N and L, E [#Z] can be evaluated nu-
merically, as shown in Appendix Il. It can also be shown that
Lo? < E[f2] < (N + 1)o2 for white Gaussian input signals
(see Lemma 3 in Appendix I1). A more pessimistic bound on
the step size, 0 < p < 2L/(N + 1), was given in [8] as a
consequence of the crude approximation E [#;]  Lo?2.

In Appendix Il it is shown that if order statistics is used, the
final excess MSE after convergence is given by

2 2 1
2 ] L
2 .2

2E ] — (N + 1)o?

~(N+1)

When L = N + 1, Equation (4) is consistent with the results
obtained for the conventional NLMS algorithm in [10]. The
algorithm presented in this section is identical to the partial-
update NLMS algorithm with multiple blocks of contiguous
coefficients to be updated proposed in [9], [8], for the case of
unity block size and L blocks. Choosing blocks of filter coef-
ficients rather than the L coefficients corresponding to the el-
ements with largest magnitude in the input-signal vector can

Az (k)X Xf
- dp—wix =0
Wi L == T
e
,—”" WNLMS

Fig. 1. The solution w1 is the PU-NLMS algorithm update obtained with
a time-varying step size uy = ||Az, (r)Xx||?/IIxx||?, or equivalently, the M-
Max NLMS algorithm [3] with unity step size.

reduce the amount of memory required for implementation [6].
However, such an approach will no longer perform an update
that minimizes the criterion in (1), resulting in slower conver-
gence speed.

For a step size ux = fil| Az, xx|*/|Ix[|?, the PU-NLMS
in (3) becomes identical to the M-Max NLMS algorithm of [3].
For i = 1, the solution is the projection of the solution of
the NLMS algorithm with unity step size onto the direction
of Az, ,,Xk, as illustrated in Figure 1. Furthermore, u =
Az, ., %x|I*/ll%x|[* corresponds to the instantaneous estimate
of E[r? /%] which gives the fastest convergence, as observed in
Appendix .

I1l. SIMULATION RESULTS

In this subsection, our analysis of the PU-NLMS algorithm is
validated using a system-identification setup. The order of the
plant chosen was N = 50, and the input signal was zero-mean
Gaussian noise with o2 = 1. The signal-to-noise ratio (SN R)
was set to 60 dB.

Figure 2 shows the learning curves for the case of L = 5,
L = 10, and L = 25 coefficients in the partial update. The
curves were obtained through averaging 100 trials. The step
size for each value of L was chosen such that convergence to
the same level of misadjustment was achieved. The correspond-
ing theoretical learning curves obtained from evaluating Equa-
tion (7) in the Appendix | were also plotted. As can be seen
from the figure, the theoretical curves are very close to the sim-
ulations. Figure 3 shows the excess MSE as a function of u
ranging from 0.1, t0 0.84mq, for different values of L,
where pmq. IS given by Equation (9) in Appendix I. Note that
the axis is normalized with respect to the maximum step size
Mmaz, Which is different for each value L. The quantity E [77]
needed for the calculation of ., was obtained through nu-
merical integration. For L = 5, L = 10, and L = 25 the
corresponding values were E [72] = 21.438, E [f2] = 32.232,
and E [7%] = 43.860, respectively. As can be seen from Fig-
ure 3, the theoretical results are very close to the simulations
within the range of step sizes considered. Using step sizes larger
than 0.8mqe, resulted in poor accuracy or caused divergence.
This is expected due to the approximations made in the anal-
ysis. However, only step sizes in the range p < 0.5pmq, are
of practical interest because larger values will neither increase



convergence speed nor decrease misadjustment. This fact is il-
lustrated in Figure 4, where the theoretical convergence curves
were plotted for different values of  using L = 10 and N = 50.
Therefore, we may state that our theoretical analysis is able to
predict very accurately the excess MSE for the whole range of
practical step sizes.

In Figure 5 we compare our results (solid lines) with those
provided by [8] (dashed lines) for the particular case where their
algorithm is equal to the one presented in Section Il of this pa-
per. As seen from Figure 5, the results presented in [8] are not
accurate even for reasonably high values of L, whereas Figure 3
shows that our analysis is accurate for a large range of L. This
comes from the fact that in [8] order statistics was not applied
in the analysis, resulting in poor estimates of E[|| Az, (x)xx]|’]
for most values of L < (N +1).
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. Learning curves for the PU-NLMS algorithm for N = 50, L = 5,
L=10and L =25, SNR = 60 dB.
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Fig. 3. Excess MSE for the PU-NLMS algorithm versus the step size p for
N =50,L=5L=10and L = 25, SNR = 60 dB.

1V. CONCLUSIONS

This paper studied normalized partial-update adaptation al-
gorithms. Convergence analysis for the conventional partial-
update NLMS (PU-NLMS) algorithm was presented, which
gave further insight to the algorithm in terms of stability, tran-
sient and steady-state performances. The analysis was validated
through simulations showing excellent agreement. New stabil-
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Fig. 4. Theoretical learning curves for different choice of step size in the PU-
NLMS algorithm for N = 50 and L = 10, SNR = 60 dB.
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Fig. 5. Comparison of Equation (7) (solid lines) with the excess MSE formula
obtained from [8] (dashed lines).

ity bounds were given for the step size that controls the stability,
convergence speed, and final excess MSE of the PU-NLMS al-
gorithm. It was shown that the step size giving the fastest con-
vergence could be related to the time-varying step size of the
M-Max NLMS algorithm. These results extend and improve
in accuracy previous results reported in the literature. The ex-
cellent agreement between the theory and the simulations pre-
sented here for the PU-NLMS algorithm has advanced signifi-
cantly the study of order-statistic-based adaptive filtering algo-
rithms.

APPENDIX |

In this appendix, the PU-NLMS algorithm is analyzed in the
mean-squared sense.

A. Coeficienterror vector

In order to derive expressions for the second-order statistics
of the PU-NLMS algorithm we will first derive an expression
for the evolution of the coefficient-error vector. Assuming that
the desired signal is given by dj, = x] wopt+ny, and defining the
coefficient error vector as Awj, = wj — Wopt, We Can express
the error as

er = Ny — xlAwk (5)



Therefore, from Equations (3) and (5) we have

kAL (k)X

Awppr = |T— kAT (1) Xk
I AT, (k)i Xk ||

B. ExcessMISEfor whiteinput signals

For the MSE analysis, we assume that the vectors are ex-
cited in a discrete number of directions. This model was used
to analyze the NLMS algorithm in [10] and is consistent with
the first- and second-order statistics of the original input sig-
nal. The model was also successfully used to analyze the quasi-
Newton (QN) [12] and the binormalized data-reusing LMS
(BNDRLMS) [13] algorithms.

The following assumptions are made:

« Independence between x; and Awy,.

o The vectors x;, and Az, ()X, are modeled by x; =

spTk Ve and Az, )Xk = 3,7k Vy, respectively, where:

* s, and §j, take on values 1 with probability 1/2.

* r and 7 are positive real valued stochastic variables
such that 7§ and 72 have the same probability distribu-
tion functions as [|x||* and || Az, (x)xx||*, respectively.

* vy, is equal to one of the N + 1 orthonormal eigen-
vectors of R = E [x;x}] denoted as V, and v, is
equal to one of the N + 1 orthonormal eigenvectors

of R = E I:AIL(k)ka-II;A}L(k):I denoted as V. For
white Gaussian input signals v and v, are uniformly

distributed and R and R share the same eigenvectors,
i.e., Vi = V. Therefore,

Pvi=V)=PEr=V) = —— (6)

N+1

Notice that for any value of L we have s;, = §; since the
angle between x;, and Az, ()X, is always smaller than 90°.

For white input signals, the excess MSE is givenby A1 =
o2tr[cov (Awy1)] [1], where

coV[Awyi1] = E[AwWki1Awy, ]
AI (k)XkX-II; )
=E|(I-p—2" "% ) Aw
[( “Az,wxl?) =
T
N
+E 2 9 AIL (k)xkxlA}L (k)]

||AIL(k)xk||2
n
HT AL, (o xelI*

=E [Aw,Aw;] —E |

Awy, Aw;xkx;A;L(k) ]

1Az, (k) xxI?
_E [ AIL(k)xkx;AkaWZ]
| Az, (kyxk?
LE -u2 Az, (k)xkx;Akaw;xkx;A}L(k)]
1Az, (k) %k l*
e —uzni Az, mnXkX AL ]
||AIL(k)xk||4

Let us analyze each term separately:

= Jgtr {E [AW}CAW;]} = A&

¢2 = Oitr{E M

= otr {E [,u

= 02E [pAwpvi Vi Awy ] E [

1
N+1[]£’“

where we used Equation (6). Since tr {AB} = tr{BA} we
will have ¢s = 3.

ba = o2t E AIL(k)xkx;AkawzxkxlA}L(k)
¢ I Az, kyxell*

AkaW—IIc—ka-Ik—A}L(k)
||A1L(k)Xk ||2

AWkAW};SkT'k Ekavk\”rZ] }
X252
Sk
SETRSETE
7

[ szxk X};A}L (k) Az, )Xk XZAWk

= o u’E

A7, (xyXkll*
022 'AwkxkxkAwk]
L Az @y xkll?

r r2
Aw;vkvk Awy, —k]
72

k

= o;1’E

‘“N—HE[ ] ALk

Az, Xk X AL, 1
s = o2 pPtr{ E |n? L
° N b ||AIL(Ic)Xk||4

=od202p E[ ]
U

Finally we obtain the expression for the excess MSE

A§k+1%¢1
7!

={1--_"

{ N+1

1
plolo’E [72]
Tk

— 2 — 3+ s+ Y5
2
(e [fe] e [3]) 2o
Tk Tk:
which can be approximated as
p 0
st = {1- i (2o ] ) 26
+ iololE H ™
Tk

where the conservative approximation E [:—:] =~ 1 was used.
The stability region in the mean-squared sense for y is

2
0<u<—r (8)
e [#]

Tk



where the step size p = 1/E [;—E] yields maximum reduction
k

of A& in (7). Further simplifications with E [:_E] R EF’;% give
k T
us *
E 7]
O<pu< W )

where E [r7] = (N + 1)o2 and E [#;] can be calculated using
knowledge of L and IV using order statistics (see also Appendix
I1). A more pessimistic bound can be obtained by using the re-
lation E [#2] > Lo?Z (see Appendix I1) giving

O<p<2- (10)

N+1
which corresponds to the bound given in [8]. We stress that the
analysis presented in this appendix shows that step sizes larger
than the ones indicated by Equation (10) may be used according
to Equation (9).

For k — oo we have

2 2
A‘Eezc ~ (N + 1)77'12«,E |:F_2:|
2- €[] L
2 2
uo: o
~ (N + 1)%
E[F] — pE[]]
2 2

2E[7] — w(N + )02
APPENDIX Il

In this Appendix it is shown how to obtain numerically E [#]
used in the step size bound derived in Appendix I. In addition,
a lower bound on E [f,%] is provided. This parameter was also
required in the analysis of the M-Max NLMS algorithm [4],
which used the approach as presented here.

The basic problem here is to calculate the second moment of
ordered statistics. This problem has received much attention in
the past, see, e.g., [14]-[16], where recursion formulas and ta-
bles were produced for expected values and moments of ordered
statistics for various different distributions.

Lety = [y1 y2 --- yny1]" be a vector containing the ele-
ments of vector x; = [z, Tx_1 ... Tr_n] ordered in value,
ie,y1 <y2 <...<y; <... <yny1. The probability density
function f;(y) of the jth element in y is given by [17]

(N+DIFF () 1 - )" foy)
(G —DUN +1—j)!

where f;(z) is the density of the unsorted random variables in
vector x and FJ~1(z) is their cumulative distribution to the
power of j — 1. The second moment of the jth element is given

by

fily) =

Efy7] = /jo Y3 fi(y)dy
(N +1)!
G-DIN+1—

/ TR W) [ — )N fuly)dy (1)

—0o0

The PU-NLMS algorithm chooses the L elements in x; of
largest magnitude. Therefore, if we order the values in
A1, (r)X) In magnitude their second moments can be found by
evaluating (11) forj = N+2— L, ..., N + 1. For the case
of Gaussian input signals and using the cumulative distribution
and density functions for the magnitude of a Gaussian variable,
we have

_ J2®,(y)—1 fory >0
Faly) = { 0 otherwise (12)
and
_ 2¢, (y) fory >0
foly) = { 0 otherwise (13)

where @, (y) and ¢, (y) are the cumulative distribution function
and the density function, respectively, of a Gaussian variable.
The density function f, (y) in (13) is in fact the probability den-
sity function for a random variable from a chi-distribution with
one degree of freedom. The problem of calculating moments
of order statistics in samples from the chi-distribution (1 degree
of freedom) was considered in [16], where a recursion formula
was developed. The quantity E [72] is given by

N+1

>

j=N+2—-L

/0 T2 @8ay) — 1) (2= 28, (5) N 6 (y)dy

2(N +1)!

E [7]= G-DIN+1-j)

which for given NV and L can be evaluated numerically.

With the aid of the previous results we are able to calculate
bounds for E[#;], as stated in the following lemma.

Lemma 1. If theinputsignal z;, is Gaussianwith zeo mean
andvarianceo?, thenE[2] = Y20, | E[y?], whee L <

N + 1, is boundedhsfollows:
Lo? <E[f] < (N + 1)o?

with equalityiff L = N + 1.

Proof: In the proof we need the following relations

E[y}] <E[y3] < -+ <E[pl < -+ <Elyka] (14)
N+1
> Eli] = (N + 1DE[x7] (15)
k=1
Eyi] < o2, for N >0 (16)

Relation (14) holds true by definition, and (15) holds true for
an arbitrary distribution for which the integral in (11) con-



verges [16], as shown below

N+1 N+1

PILTAEDY

j=1 j=1

| vEwn-

—00

-/..

(N +1)!
G-DIN+1=7)1"

F)IM faly)dy

N+1

>

=1

(N +1)! i
G- W

[1-FE]" ™ b y? faly)dy

Il
—
g 8

[1 - F(]" " b y?faly)dy

/_Oo (N + 1)y fo(y)dy
= (N + 1)E[z}]

where we used "1 (V)pFg¥* = (p + @)V, The rela-
tion (16) can be shown for Gaussian input signals by evaluat-
ing (11) for j = 1 with F,(y) and £, (y) given by Equations (12)
and (13):

el = [ T oV + 1)y 2 - 28, ()] 60 (v)dy

- / VYN +1)y? [1 — 8, (y)]Y ——=e>F dy

0 V2mo2

o 1 =2 N 1 —y?
< 2NHL(NV +1)y? [—62”3] ———e?3d
< / (N +1)g? |5 et
o0 , 1 —(N+21)y2
= 2(N +1)y* ———=e 22z dy
/0 ( ) \/2mo?

0.2

= ——L_ <o2forN>0.

vN +1
2

where we used 1 — @,(y) < %eZ_’y? for y > 0 [17], and
I y2e~ W dy = ++/=. From relations (14) and (16) it fol-
lows that Lo < E[f2] < (N 4 1)o2 holds true for L < N +1.
Relation (16) gives us strict inequality for L < N + 1 when
N > 0, and consequently equality holds true only when L =
N+ 1. O
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