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ABSTRACT

We present in this paper a new algorithm for target tracking

in cluttered image sequences using the bootstrap particle

filter. The proposed algorithm incorporates the models for

target signature, target motion and clutter correlation and

allows for direct tracking from the image sequence. Monte

Carlo simulation results show that the bootstrap tracker

outperforms the association of a single frame maximum like-

lihood position estimator and a Kalman-Bucy filter (KBf)

in a scenario with a heavily cluttered, dim target.

1. INTRODUCTION

We introduced in [1] a Bayesian algorithm for auto-
matic target tracking in digital image sequences. In
scenarios of heavily cluttered targets, the Bayes tracker
was shown to outperform the association of an image
correlator and a Kalman-Bucy filter that was previ-
ously proposed in the literature, see [2]. However, we
assumed in [1] a discrete-time, discrete-valued target
motion model where the target centroid position was al-
lowed to take values only on a finite grid. In many real-
world situations, such modeling strategy may prove too
restrictive to describe the actual target dynamics. Un-
like in [1], we use in this paper an alternative discrete-
time, but continuous-valued motion model where the
unknown target centroid position and velocity in both
dimensions of the plane are allowed to be real num-
bers. To solve the Bayesian estimation problem for this
discrete-time, continuous-valued state space model, we
resort then to sequential importance sampling [3, 4].

Sequential importance sampling (SIS) filtering, also
known as particle filtering, is a recursive Monte Carlo
simulation approach where the desired posterior prob-
ability density function (pdf) of the hidden state vec-
tor is represented at each instant n by a set of sam-
ples (or particles) with associated importance weights.
The particles are drawn sequentially from a proposed
importance function while the importance weights are
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updated recursively at each time step. A selection (or
resampling) step [5, 6] is added to prevent the distri-
bution of importance weights from getting skewed as
time increases. In recent years, particle filters have
been successfully applied to several practical problems
including mobile robot localization [7], computer vision
[8], terrain navigation [9], and many others.

We use the likelihood function model for the ob-
served images from [1] to derive an SIS tracker based on
the bootstrap particle filter algorithm [5]. A 2D first-
order, noncausal Gauss-Markov random field (GMRf)
model [10] is used to describe the clutter spatial corre-
lation. We test the performance of the proposed algo-
rithm using a simulated target sequence generated from
real infrared airbone radar (IRAR) data and compare
the bootstrap tracking filter to the suboptimal associ-
ation of a single frame maximum likelihood (ML) po-
sition estimator and a linear Kalman-Bucy tracker.

This paper is divided into 7 sections. Section 1 is
this introduction. In sections 2 and 3, we review the
models for target motion, target signature and clutter
that underly our derivations and present the analytical
expressions for the probabilistic model of the dynamic
target state evolution (referred here as the Markovian
transition kernel) and for the likelihood function of the
observations. In section 4, we present the bootstrap
tracking filter. In section 5, we describe the linearized
Kalman-Bucy tracker that is used in this paper for per-
formance comparison purposes. Performance results
are discussed in section 6. Finally, we make some con-
cluding remarks in section 7.

2. TARGET MOTION MODEL

Assuming Cartesian coordinates, we use the indices i =
1 and i = 2 to refer respectively to each of the two
dimensions of the plane. Let

xi(t) =
[
xi(t)

d

dt
xi(t)

]T

t ∈ � (1)

be a continuous-time state vector that collects the po-
sition and velocity of the target centroid at instant t in



dimension i. Let now

xn,i = xi(n∆) n ∈ Z i = 1, 2 (2)

be the corresponding discrete-time state vector with ∆
denoting the sampling period in time. We build the
four-dimensional target state vector

xn =
[
xT

n,1 xT
n,2

]T
(3)

where xn,i, i = 1, 2, are defined as in (2). We assume
further that the centroid motion in dimension i = 1
is statistically independent of the motion in dimension
i = 2 and that the system input noise is Gaussian, zero
mean, and identically distributed in both dimensions.
The white noise acceleration motion model is given by
[2]

xn+1 =
[

F 0
0 F

]
xn +

[
vn,1

vn,2

]
(4)

where

F =
[

1 ∆
0 1

]
(5)

and

E
[
vn,i vT

l,j

]
= q

[
∆3

3
∆2

2
∆2

2 ∆

]
︸ ︷︷ ︸

Q

δn−l, i−j . (6)

In (6), E [.] denotes expected value or ensemble aver-
age, q is a positive real number and δr,s is the 2D dis-
crete Dirac delta function such that δr,s = 1 if (r, s) =
(0, 0) and zero otherwise.

2.1. Markovian Transition Kernel

From the assumption of statistical independence of the
target motion in each coordinate, it follows that the
Markovian transition kernel, p(xn+1 | xn), factors as

p(xn+1 | xn) = p(xn+1,1 | xn,1) p(xn+1,2 | xn,2) . (7)

On the other hand, from (4), we write

p(xn+1,i | xn,i) = N(Fxn,i, Q) (8)

where N(m,R) denotes the multivariate normal (Gaus-
sian) distribution with mean m and covariance matrix
R, and matrix Q is defined as in (6).

3. OBSERVATION AND CLUTTER MODEL

A remote sensing device, e.g. an infrared airborne
radar, sequentially generates raw sensor measurements
of a given surveillance region that contains both targets

of interest and undesired spurious reflectors (clutter).
For simplicity, we assume in this paper that there is
only one single target of interest present at the scene
at each sensor scan. The raw sensor measurements at
instant n are sampled and processed to form a 2D dig-
ital sensor image, referred to as a frame. Frame n is
modeled by the L × M matrix

Yn = H(x∗
n) + Vn (9)

where matrix Vn represents the background clutter,
and matrix H(x∗

n) is the clutter-free target image, which
is a function of the 2D pixel location of the target cen-
troid, x∗

n. The two-dimensional hidden vector x∗
n is de-

fined on the finite sensor grid L = {(i, j) | 1 ≤ i ≤ L,
1 ≤ j ≤ M} and is obtained from the four-dimensional
continuous-valued state vector xn in (3) by making

x∗
n(1) = round(

xn,1(1)
∆1

) (10)

x∗
n(2) = round(

xn,2(1)
∆2

) (11)

where ∆1 and ∆2 are the image resolutions respectively
in dimensions i = 1 and i = 2.
Target Model We assume that, any given frame, the
clutter-free target image is contained in a bounded rect-
angular region of size (ri + rs + 1) × (li + ls + 1). In
this notation, ri and rs denote the maximum vertical
pixel distances in the target image when we move away,
respectively up and down, from the target centroid.
Analogously, li and ls are the maximum horizontal
pixel distances in the target image when we move away,
respectively left and right, from the target centroid.
For each pixel centroid position (i, j) ∈ L, the non-
linear function H in (9) returns a spatial distribution
of (real-valued) pixel intensities {ak, l}, −ri ≤ k ≤ rs,
−li ≤ l ≤ ls, centered at (i, j). Formally, we write

H(in, jn) =
rs∑

k=−ri

ls∑
l=−li

ak, lEin+k,jn+l (12)

where Er, s is an L × M matrix whose entries are all
equal to zero, except for the element (r, s) which is
equal to 1. The coefficients {ak,l} in (12) are referred
to as the target signature parameters. As a first approx-
imation, we assume in this paper that the signature pa-
rameters are deterministic, known and frame-invariant.
Remark To write (12), we assumed that the target is
sufficiently far from the borders of the image grid so
that we do not have to worry about boundary condi-
tions. Boundary effects can be easily taken into account
by defining the extended image grid L̂ = {(i, j) | −rs + 1
≤ i ≤ L + ri, −ls + 1 ≤ j ≤ M + li} and changing the



summation limits accordingly in (12) for centroid loca-
tions near the borders, see [1] for details.
Clutter Model We capture the 2D spatial correlation of
the background clutter using a noncausal, spatially ho-
mogeneous Gauss-Markov random field (GMrf) model
[10]. The clutter returns at frame n, Vn(i, j), 1 ≤ i ≤
L, 1 ≤ j ≤ M , are described by the 2D finite difference
equation

Vn(i, j) = βc
v [Vn(i − 1, j) + Vn(i + 1, j)]

+ βc
h [Vn(i, j − 1) + Vn(i, j + 1)] + Un(i, j)(13)

where E [Vn(i, j)Un(p, r)] = σ2
c δi−p, j−r. The assump-

tion of zero-mean clutter implies a pre-processing of the
data that subtracts the mean of the background.

3.1. Likelihood Function

Let yn be a 1D long-vector representation of the frame
Yn obtained by either row or columnwise scanning.
Assuming a 2D GMrf background as in (13) and deter-
ministic signature parameters {ak,l}, we use the results
in [1] to write the likelihood function of the observed
nth frame as

p(yn | xn,1, xn,2)∞ exp
[
2λ(xn,1, xn,2) − ρ

2σ2
c

]
. (14)

where ρ is a target energy term that is constant away
from the image borders, see [1] for details. The function
λ in (14) is in turn given by [1]

λ(xn,1, xn,2) =
rs∑

k=−ri

ls∑
l=−li

ak,lµ(x∗
n(1) + k, x∗

n(2) + l)

(15)
where x∗

n(i), i = 1, 2, are obtained respectively from
(10) and (11), and µ(p, r) is the output of the differen-
tial operator

µ(p, r) = Yn(p, r) − βc
h [Yn(p, r − 1) + Yn(p, r + 1)]

− βc
v [Yn(p − 1, r) + Yn(p + 1, r)] (16)

with Dirichlet (identically zero) boundary conditions.
Equation (15) is valid for ri + 1 ≤ x∗

n(1) ≤ L − rs and
li +1 ≤ x∗

n(2) ≤ M − ls. For centroid positions close to
the image borders, the summation limits in (15) must
be varied accordingly as explained in [1]. Intuitively,
we can interpret the function λ in (15) as the concate-
nation of two linear filtering operations: first, we pass
the image through a noncausal differential filter to gen-
erate a residual error image and, then, we apply to this
error image a 2D correlation filter that is matched to
the (known) 2D target template.

4. PARTICLE FILTER TRACKER

The on-line Bayesian estimation problem can be sum-
marized as follows: given a sequence of observed frames
Yn

1 = {y1, y2 . . . yn} and the probability density func-
tion (pdf) p(x0) of the initial (continuous-valued) tar-
get state, x0, compute recursively the posterior pdf
p(xn | Yn

1 ), for n ≥ 1, using the Markovian transi-
tion kernel, p(xn+1 | xn), and the likelihood function,
p(yn | xn). From the posterior pdf, we can then infer
the value of the hidden (unobserved) state at instant
n, xn, using some optimality criteria, e.g. minimum
mean-square error (MMSE) or maximum a posteriori
(MAP).

Particle filters [3] are a simulation approach to Bayes-
ian estimation in which the posterior pdf is represented
at each instant n by a set of particles

{
x(j)

n

}
, 1 ≤ j ≤

Np, with associated weights w
(j)
n . The MMSE estimate

of the hidden state xn is then obtained simply as [3]
a weighted average of the particles. Alternatively, the
MAP estimate can be obtained [4] from the histogram
of the particles.

Ideally, we would like the particles to be samples
from the true posterior in which case all weights w

(j)
n

would be identical and equal to 1/Np. In practice, how-
ever, either the posterior pdf is unavailable or difficult
to sample from. An alternative approach known as
sequential importance sampling (SIS) [4] is to sample
x(j)

n sequentially from an importance function π(xn |
Xn−1

0 ,Yn
1 ) and update the weights using the recursion

w(j)
n ∞w

(j)
n−1

p(yn | x(j)
n ) p(x(j)

n | x(j)
n−1)

π(x(j)
n | (X(j))n−1

0 , Yn
1 )

,

Np∑
j=1

w(j)
n = 1 .

(17)
In principle, the importance function π can be arbitrary
provided that it satisfies two restrictions [4]

1. π(Xn
0 | Yn

1 ) must have the same support as p(Xn
0 |

Yn
1 ) and be strictly positive and integrable to 1

in that support.

2. π(Xn
0 | Yn

1 ) = π(xn | Xn−1
0 ,Yn

1 )π(Xn−1
0 | Yn−1

1 ).

4.1. Bootstrap Tracker

The first practical SIS filter was the bootstrap filter [5],
where the Markovian transition kernel p(xn | xn−1) is
used as the importance function π(xn | Xn−1

0 ,Yn
1 ).

The weight update equation reduces then to

w(j)
n ∞w

(j)
n−1p(yn | x(j)

n )
Np∑
j=1

w(j)
n = 1 . (18)



The key innovation of the bootstrap filter [5] was to
introduce an additional particle selection step to avoid
the so-called degeneracy phenomenon [3], i.e., the ten-
dency of the distribution of the particle weights to be-
come skewed as the number of SIS iterations increases.
The selection step proposed in [5] consisted simply of
resampling Np times from the set

{
x(j)

n

}
with replace-

ment according to the particle weights so that low-
weight particles are discarded whereas high-weight par-
ticles are multiplied. The new weights after the resam-
pling step are all reset then to 1/Np.

Using the motion, target and clutter models from
sections 2 and 3 and recalling the expressions for the
Markovian transition kernel in subsection 2.1 and for
the likelihood function in subsection 3.1, we present in
Table 1 a bootstrap filter algorithm for target tracking
in image sequences.

1.Initialization For j = 1, . . . , Np

• Draw x(j)
0,1 ∼ p(x0,1), x(j)

0,2 ∼ p(x0,2),
make w

(j)
0 = 1/Np and set n = 1.

2. Importance Sampling Step For j = 1, . . . , Np

• Draw x̃(j)
n,1 ∼ N(Fx(j)

n−1,1,Q)
and x̃(j)

n,2 ∼ N(Fx(j)
n−1,2,Q).

• Compute the importance weights
w̃

(j)
n ∞w

(j)
n−1 p(yn | x̃(j)

n,1, x̃(j)
n,2)

∑Np

j=1 w̃
(j)
n = 1

using equations (14), (15), and (16).
3. Selection Step
• Generate a new set of samples{
x(j)

n =
[
(x(j)

n,1)
T (x(j)

n,2)
T
]T

}
1 ≤ j ≤ Np

such that P (x(j)
n = x̃(k)

n ) = w̃
(k)
n .

• Make w
(j)
n = 1/Np, 1 ≤ j ≤ Np.

• While n ≤ Nmax, set n = n + 1
and go back to step 2.

Table 1: Algorithm I: Bootstrap filter for target track-
ing in 2D cluttered image sequences.

Clutter Adaptation When the clutter model parame-
ters βc

h, βc
v and σ2

c are unknown, they must be esti-
mated from the observed data. For computational sim-
plicity, we use in this paper a suboptimal approach to
clutter adaptation where we estimate the GMrf clutter
parameters directly from each available sensor frame
Yn using a variation of approximate maximum like-
lihood (AML) parameter estimation algorithm intro-
duced in [10].

5. LINEARIZED KALMAN-BUCY
TRACKER

We compare the proposed nonlinear bootstrap tracker
to the association of a single frame maximum likelihood
(ML) position estimator and a linear Kalman-Bucy fil-
ter. The preliminary ML estimates of the 2D pixel
location of the target centroid are given by

x̂∗
n = arg max

x∗
n

p(yn | xn) . (19)

The pixel estimates of the centroid location are con-
verted to continuous space and treated as decoupled
noisy measurements of the true centroid positions in
each dimension. A conventional Kalman-Bucy filter
with knowledge of the state dynamics is then used to
refine the preliminary ML estimates. Table 2 summa-
rizes the algorithm. In Table 2, σ2

v,i denotes the vari-
ance of the ML centroid position estimation error in
the dimension i and C is the row vector C = [1 0]. We
denote the mean and covariance matrix of x0,i, i = 1, 2,
respectively by x0,i and Σ0,i. The symbols x̂n|n,i and
Σn|n,i denote respectively the Kalman filter estimate of
the target state xn,i at instant n in dimension i and its
associated error covariance matrix.

Initialization For i = 1, 2
• x̂0|0,i = x0,i Σ0|0,i = Σ0,i

For n = 1 to Nmax
ML Step
Compute p(yn | xn,1(1), xn,2(1))
using equations (14), (15) and (16), make
(ẑ1, ẑ2) = arg maxL p(yn | xn,1(1), xn,2(1))
and x̃n,i = round(ẑi ∆i), i = 1, 2
Kalman Filter Step For i=1,2
• x̂n|n−1,i = Fx̂n−1|n−1,i

• Σn|n−1,i = FΣn−1|n−1,iFT + Q
• Kn,i = Σn|n−1,iCT (CΣn|n−1,iCT + σ2

v,i︸ ︷︷ ︸
Sn|n−1

)−1

• x̂n|n,i = x̂n|n−1,i + Kn,i(x̃n,i − Cx̂n|n−1,i)
• Σn|n,i = Σn|n−1,i − Kn,iSn|n−1,iKT

n,i

End of for loop

Table 2: Algorithm II: Association ML Estimator +
Linear Kalman-Bucy Filter (for comparison purposes
only).

6. PERFORMANCE RESULTS

We compare next the tracking performances of the boot-
strap tracker and the KBf tracker using a simulated
image sequence that was generated from real infrared
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Figure 1: Real IRAR intensity image from Portage,
USA (Lincoln Laboratory IRAR collection).
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Figure 2: (a) Simulated cluttered target image,
PTCR= 7.3 dB, (b) Clutter-free target template shown
as a binary image.

airborne radar (IRAR) intensity imagery. The base im-
age, shown in Figure 1, is an aerial scene from Portage
USA, extracted from the IRAR image collection at
Johns Hopkins University’s Center for Imaging Sciences.
For details on the simulation of the clutter background
sequence, see [11]. We add to the background sequence
a simulated target template that moves according to
a white noise acceleration model, see section 2, with
parameters q = 10 and ∆ = 4ms. The spatial res-
olution (pixel size) is ∆1 = ∆2 = 20cm. The im-
age frame extends from 0 to 30 meters (150 pixels)
in both the horizontal and vertical dimensions. The
target’s (continuous) initial vertical and horizontal po-
sitions are uniformly distributed respectively between
4 and 12 meters, and between 4 and 8 meters. The
initial target velocity is 10 m/s in both dimensions.
Figures 2(a) and (b) show respectively the simulated
cluttered and clutter-free image of a target centered at
pixel location (40, 40). The peak target-to-clutter ra-
tio (PTCR) in Figure 2(a) is 7.3 dB. Figures 3 and 4
show the root mean-square error (RMSE) in meters of

the MAP target centroid position estimates for a 3400-
particle bootstrap tracker, respectively in the vertical
and horizontal directions. The error curves were ob-
tained from 45 Monte Carlo runs with PTCR lowered
to -5.7 dB and 14 frames per run. The plots in Figures 3
and 4 show good steady-state tracking performance and
low target acquisition time for the proposed bootstrap
tracker.
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Figure 3: Bootstrap tracking performance, PTRC= -
5.7 dB, vertical dimension.
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Figure 4: Bootstrap tracking performance, PTRC= -
5.7 dB, horizontal dimension.

In the sequel, we compare the proposed bootstrap
tracker to the linearized KBf tracker described in Ta-
ble 2. Figure 5 shows the vertical RMS centroid po-
sition estimation error in meters, respectively for the
3400-particle bootstrap tracker with MAP estimation
criterion (dashed line) and for the KBf tracker (solid
line). The corresponding results for the horizontal di-
mension are shown in Figure 6. The performance curves
were also estimated from 45 Monte Carlo runs with
PTCR = -5.7 dB. We see from the plots in Figures 5
and 6 that the association ML/KBf has a very poor
tracking performance, basically failing to acquire and



track the target. Conversely, despite the low PTCR
and poor visibility of the target, the proposed nonlin-
ear bootstrap filter tracks the simulated vehicle with a
final tracking error after 14 frames of less than 1 pixel
within the image resolution.
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Figure 5: RMSE in meters for the bootstrap tracker
(dashed) and the KBf tracker (solid), PTCR = -5.7
dB, vertical dimension.
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Figure 6: RMSE in meters for the bootstrap tracker
(dashed) and the KBf tracker (solid), PTCR = -5.7
dB, horizontal dimension.

7. CONCLUSIONS

We introduced in this paper a new particle filter (boot-
strap) algorithm for direct target tracking from image
sequences and tested its performance using a Monte
Carlo simulation. The simulation results show good
tracking performance for the proposed tracker using
3400 particles and 14 image frames in a scenario of
low target-to-clutter ratio. In contrast to the nonlin-
ear boostrap tracker, a linearized Kalman-Bucy tracker
fails to acquire and track the target under the same
simulation conditions.
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