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Abstract—We present a novel adaptive algorithm for blind equalization. It
is based on a tuner used in adaptive control that sets the second derivative of
the parameter estimates and minimizes the cost function introduced by Go-
dard. Based on simulation results we present a comparison with the Constant
Modulus and the Shalvi-Weinstein algorithms. Both the convergence speed
and the computational complexity of the proposed algorithm lie between those
of the Constant Modulus and the Shalvi-Weinstein algorithms, thus present-
ing a more favorable compromise between convergence speed and computa-
tional complexity. Some preliminary results also suggest that the proposed al-
gorithm presents a more robust behavior with respect to convergence to global
minima.

I. INTRODUCTION

A fast, discrete-time adaptive filtering algorithm was intro-
duced in a previous paper [1] and further analyzed in [2]. It
was derived from a continuous-time tuner used in adaptive con-
trol, which sets the second derivative (”acceleration”) of the co-
efficient estimates [3]. For this reason the discrete-time algo-
rithm was named the Accelerating Adaptive Filtering (AAF) al-
gorithm. Results presented in [3] indicate that, at the cost of
a moderate increase in complexity, this tuner is able to achieve
a compromise between convergence speed and steady state co-
efficient error superior to that of the tuner that adjusts the first
derivative (“velocity”) of the coefficient estimates.

In [1] it was shown that, for colored input signals, the AAF
algorithm presents a more favorable compromise between con-
vergence speed and steady-state estimation error than the LMS
or NLMS algorithms, a property obtained at the cost of a moder-
ate increase in computational complexity. A deterministic con-
vergence proof using Lyapunov’s method was also presented.

A simplified version of the AAF algorithm and the results
of first and second order moment analyses of its filter coeffi-
cient errors were presented in [2]. Expressions that characterize
the transient behavior of the mean squared error and the misad-
justment allowed comparison with the LMS algorithm, showing
the advantages of using the AAF algorithm. For similar con-
vergence speeds, the AAF algorithm presents a lower misad-
justment than the LMS algorithm. As a result of performance
comparison with the LMS algorithm, some practical hints for
choosing the parameters of the AAF algorithm were presented.
Finally, it was also shown that the AAF algorithm can be inter-
preted as a quasi-Newton method.

The above results motivated the development of an adaptive
algorithm for blind equalization based on the same principles.
Since the the AAF algorithm compares favorably with the LMS
algorithm, one might expect that an algorithm for blind equal-
ization based on the accelerating tuner would achieve a better
performance than the Constant Modulus (CM) algorithm.

Magno T. M. da Silva and Max Gerken are with the Department of
Telecommunications and Control Engineering at Escola Politécnica, Univer-
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In the sequel we initially present a summary of the accelerat-
ing tuner. Then we introduce a non-linearity and use Euler’s re-
verse method to discretize the non-linear tuner obtaining an Ac-
celerated Constant Modulus (ACM) algorithm. Next we present
simulation results comparing the convergence behavior of the
ACM, CM and Shalvi-Weinstein (SW) algorithms. We close
the paper making some concluding remarks.

II. THE ACCELERATING TUNER

In adaptive control and recursive coefficient estimation one
often needs to adjust recursively an estimate p(t) of a coefficient
vector po using a measured signal

d(t) = xT (t)po + η(t), (1)

where x(t) is the input signal vector (regressor) and η(t) is the
measurement noise. The goal is to maintain both the estimation
error

e(t) = xT (t)p(t) − d(t), (2)

and the coefficient error

∆p(t) = p(t) − po (3)

as small as possible.
The most straightforward tuning method used in adaptive

control sets the first derivative of the coefficient estimates pro-
portional to the estimation error:

ṗ(t) = −Mx∗(t)e(t)
e(t) = xT (t)p(t) − d(t),

(4)

where M is a positive-definite matrix of appropriate dimensions
and ∗ stands for complex conjugate.

It is worth noting that the popular LMS algorithm can be ob-
tained by applying Euler’s method to discretize the above “ve-
locity” tuner. Indeed, by setting M = µoI and µ = µoT , where
T is the integration constant, expressions

p[n + 1] = p[n] − µx∗[n]e[n]

and
e[n] = xT [n]p[n] − d[n]

easily follow from (4).
A tuner that adjusts the second derivative (“acceleration”) of

the coefficient estimates was introduced in [3]. With q(t) =
∆̇p(t) = ṗ(t) (see (3)), the accelerating tuner can be described
as follows [3]:

ṗ(t) = q(t) (5)

q̇(t) = −M1x
∗(t)e(t) +

−2M1

(
M2 + x∗(t)xT (t)M1M3

)
q(t) (6)

e(t) = xT (t)p(t) − d(t). (7)
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Column vectors x(t), p(t) and q(t) have dimension N , and
the N × N symmetric matrices M1, M2 and M3 are positive-
definite.

If no measurement noise is present we may write d(t) =
xT (t)po and e(t) = xT (t)∆p(t). In this case the dynamics
of the accelerating tuner can be described using the coefficient
error vector ∆p(t) as follows:

[

∆̇p(t)
q̇(t)

]

︸ ︷︷ ︸

ṡ(t)

=

[
0 I

A21 A22

]

︸ ︷︷ ︸

A(t)

[
∆p(t)
q(t)

]

︸ ︷︷ ︸

s(t)

, (8)

with

A21 = −M1x
∗(t)xT (t)

A22 = −2M1

(
M2 + x∗(t)xT (t)M1M3

)
.

Sufficient conditions to guarantee stability of this system are

4M1M3M1M2 > I (9)

and

M2M1M3 + M1M3M2 > M−1
1 /2. (10)

The Lyapunov function used to establish this is defined by the
matrix

P =

[
M2 M−1

1 /2
M−1

1 /2 M3,

]

(11)

which has also been used to prove stability of the AAF algorithm
[1].

The AAF algorithm was obtained [1] from (5) to (7) using
Euler’s reverse method. The reasons for this choice are quite
simple: the direct Euler method results in a low complexity algo-
rithm that may be unstable; other numerical integration methods
like the trapezoidal rule result in algorithms with higher compu-
tational complexity. For these reasons we use Euler’s reverse
method in the next section to derive the ACM algorithm.

III. THE ACCELERATED CONSTANT MODULUS (ACM)
ALGORITHM

We begin substituting Equation (7) by a non-linear version

e(t) = ϕ(xT (t)p(t)) (12)

with ϕ(.) satisfying

∂ϕ(xT p)

∂p
= g(xT p)x, (13)

where ∂
∂p

stands for derivation with respect to the complex vec-
tor p, and g(.) is a scalar function. Thus, a linear approximation
of ϕ(.) may be written as

ϕ(xT p) ≈ ϕ(xT pv) +

[

∂ϕ(xT p)

∂p

∣
∣
∣
∣
p=pv

]T

(p − pv)

≈ ϕ(xT pv) + g(xT pv)x
T (p − pv). (14)

Applying Euler’s reverse rule to expressions (5), (6) and (12),
considering an integration step α, we obtain

p[n] = p[n − 1] + αq[n] (15)

q[n] = q[n − 1] − αM1 {x∗[n]e[n]+

+2
(
M2 + x∗[n]xT [n]M1M3

)
q[n]

}
(16)

e[n] = ϕ(xT [n]p[n]). (17)

These equations do not make the update of p[n] and q[n] possi-
ble. To overcome this obstacle we introduce an a priori error

ea[n] = ϕ(xT [n]p[n − 1]) (18)

and note from Equation (15) that

xT [n]p[n] = xT [n]p[n − 1] + αxT [n]q[n]. (19)

By means of (19) and (14) the a posteriori error e[n] can be
computed from the a priori error ea[n] as follows:

e[n] = ϕ

(

xT [n]p[n − 1]
︸ ︷︷ ︸

y[n]

+αxT [n]q[n]

)

(20)

≈ ϕ(y[n])
︸ ︷︷ ︸

ea[n]

+αg(y[n])xT [n]q[n]. (21)

Using (21) and (16) we obtain an update expression:

q[n] = G−1 (q[n − 1] − αM1x
∗[n]ea[n])

G = I + α2g(y[n])M1x
∗[n]xT [n] +

+2αM1

(
M2 + x∗[n]xT [n]M1M3

)
.

It can be shown that the inverse of matrix G is given by

G−1 = A

{

I − M1x
∗[n]xT [n]B[n]M−1

1

1 + xT [n]B[n]x∗[n]

}

(22)

with
A = (I + 2αM1M2)

−1 (23)

and
B[n] = α {αg(y[n])I + 2M1M3}AM1. (24)

Substituting this result into (22) we obtain a first version of the
ACM algorithm:

A = (I + 2αM1M2)
−1

y[n] = xT [n]p[n − 1]

ea[n] = ϕ(y[n])

B[n] = α (αg(y[n])I + 2M1M3)AM1

C[n] =
αea[n] + xT [n]B[n]M−1

1 q[n − 1]

1 + xT [n]B[n]x∗[n]
M1

q[n] = A (q[n − 1] − C[n]x∗[n])

p[n] = p[n − 1] + αq[n].
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The computational complexity of this version is proportional to
N2. However, if matrices M1, M2, and M3 are diagonal the
computational complexity becomes proportional to N . In par-
ticular if we take Mi = miI, i = 1, 2, 3, with mi being
positive constants, the following low complexity version of the
ACM algorithm results:

a = 1 + 2αm1m2

y[n] = xT [n]p[n − 1]

ea[n] = ϕ(y[n])

b[n] = 2αm2
1m3 + α2m1g(y[n])

c[n] =
b[n]xT [n]q[n − 1] + αm1aea[n]

a + b[n] ‖x[n]‖2

q[n] =
1

a
(q[n − 1] − c[n]x∗[n])

p[n] = p[n − 1] + αq[n],

where a, 1/a, αm1a, 2αm2
1m3 and α2m1 need to be computed

only once. For real signals this version requires 6N + 4 multi-
plications, 1 division, 5N additions and two non-linearity com-
putations, a computational complexity that lies between those of
the CM and SW algorithms, the latter being proportional to N 2.

To complete the derivation of the ACM algorithm functions
ϕ(.) and g(.) must be chosen. To this end we consider the in-
stantaneous versions of the cost functions introduced by Godard
[5], [4]:

Ψq(y) =
1

2q
(|y|q − Rq)

2 , (25)

where y = pT x and q is a positive integer.
Introducing

fq(y) = (|y|q − Rq) |y|q−2 (26)

it results [5], [4] that

∇pΨq(y) = fq(y)y
︸ ︷︷ ︸

ϕq(y)

x∗ (27)

and
∂ϕq(y)

∂p
= q

(

fq(y) + |y|2(q−1)
)

︸ ︷︷ ︸

gq(y)

x, (28)

where ∇p stands for the gradient with respect to p. For q = 2
we obtain the non-linearities that are used in the ACM algo-
rithm:

ϕ(y) , ϕ2(y) =
(
|y|2 − R2

)
y (29)

g(y) , g2(y) = 2
(
2|y|2 − R2

)
. (30)

We observe that the more general nonlinearities ϕq(.) and gq(.)
can also be used.

IV. SIMULATIONS RESULTS

In this Section we compare the convergence behaviour of
the ACM algorithm with the well-known CM and SW algo-
rithms. The first problem we are faced with when using the
ACM algorithm is how to choose the parameters α, m1, m2 and
m3 to obtain an adequate performance. Motivated by the fact
that the AAF algorithm is stable and reaches its fastest conver-
gence at the upper bound of (9) [2] we introduce a parameter
γ to set m1m2 = 1/(2γ) and m1m3 = γ/2. This guaran-
tees 4m2

1m2m3 = 1. Consequently, we need to set three posi-
tive parameters, α, γ and m1, to adjust the performance of the
ACM algorithm. An investigation of the stability domain of
these parameters still must be performed. However, our expe-
rience indicates that this is not a critical matter. As long as they
are positive, simulation results suggest that α should be chosen
lower than one and γ and m1 may be chosen almost without
constraints.

Table I shows the channel models used in the simulations. For
channel H7 coefficients h0(n), h1(n) and h2(n) are generated
by passing a Gaussian white noise through a second order But-
terworth filter designed to simulate a fade rate of 0.1 Hz [6].

TABLE I

COMMUNICATION CHANNEL MODELS USED IN THE SIMULATIONS.

H1(z) = (1 + 2z−1 + z−2)/
√

6
Zeros: {−1;−1}
H2(z) = (1 + 2z−1 + 0.96z−2)/

√
5.9216

Zeros: {−1.2;−0.8}
H3(z) = (1 + 1.6z−1 + z−2)/

√
4.56

Zeros: {e±jθ, θ = π/4.882}
H4(z) = (1 + 1.9z−1 + 1.2z−2)/

√
6.05

Zeros: {−0.9545 ± j0.5454}
H5(z) = 1/(1 + 0.6z−1)
Pole: {−0.6}
H6(z) = (1.11 + z−1 + 0.9z−2)/

√
3.0421

Zeros: {−0.4505 ± j0.7797}
H7 (Time-variant [6])
x(n) = h0(n)a(n) + h1(n)a(n − 1)+

+h2(n)a(n − 2),
a(n): channel input symbols
x(n): noiseless channel output.

Fig. 1 shows the convergence behavior by means of the In-
tersymbol Interference (ISI) curves of the ACM, CM and SW
algorithms for 4-QAM modulation and the noiseless channels
H1, H2, H3 and H4. For the channels H1 and H2, which have
real zeros on the unit circle and close to it respectively, the per-
formance of the ACM algorithm lies between the performances
of the CM and SW algorithms. For the channels H3 and H4 the
ACM algorithm has a behavior very close to the SW algorithm.

The contour plot of E{Ψ2(y)} (Godard cost function) for
channel H5 is shown in Fig. 2. This figure shows two local
and two global minima of the cost function and different tra-
jectories of the CM, SW and ACM algorithms. If initialized at
p[0] = [0 1]T the algorithms present similar behaviors.
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For p[0] = [−0.4 0.05]T , which is close to one of the lo-
cal minima, the ACM algorithm crosses the local minimum and
reaches one of the global minima while the CM and SW al-
gorithms stagnate at the local minimum. If the pole of H5(z)
is changed from −0.6 to −0.2 the local minima become more
pronounced. In this case, the ACM algorithm shows the same
behavior of the CM and SW algorithms, being attracted to the
local minima. This behavior suggests that, to some extent, the
ACM algorithm has the ability to escape from soft local minima.

For p[0] = [0.2 − 0.4]T the ACM algorithm reaches one of
the global minima crossing the attraction domain of a local min-
imum while the CM and SW algorithms converge to the other
global minimum. The corresponding ISI curves are shown in
Fig. 3. In this case, the ACM algorithm follows the “rocky trail”
while the others converge straight to a valley. While successfully
avoiding a local minimum, the ACM algorithm shows a slower
convergence behavior. If the pole of H5(z) is again changed
from −0.6 to −0.2 the three algorithms present the same behav-
ior, converging to the same global minimum.

Fig. 4 shows ISI curves of the ACM algorithm for different
initializations. For each initialization, the ISI of the ACM al-
gorithm almost reaches the ISI value of a Wiener solution with
the same delay of combined channel equalizer response. Be-
sides being a very regular behavior, it confirms that the ACM
algorithm doesn’t avoid deep local minima.

Fig. 5 shows the equalizer’s output for the CM, SW and ACM
algorithms. In this case a time-variant channel, H7, is used and
the signal-to-noise ratio is set to 20 dB. The absolute values of
the roots of h0(n)x2 +h1(n)x+h2(n) are shown in Fig. 5-d so
that burst of errors can be associated with rapid changes of these
roots. Particularly, the bursts near iterations 5000 and 27000
are due to strong spectral nulls (absolute value equal one is in-
dicated by a straight line). The ACM algorithm shows a faster
recuperation than the CM algorithm, presenting a behavior very
close to the SW algorithm. The corresponding ISI curves are
presented in Fig. 6 confirming the similar behaviors of the ACM
and SW algorithms.

V. CONCLUSIONS

We have proposed an algorithm for blind equalization that
presents a more favorable compromise between convergence
speed and computational complexity than the CM and SW al-
gorithms. Through simulations we showed that the ACM algo-
rithm outperforms the CM algorithm and has a behavior close
to the SW algorithm in many situations. For example, to some
extent it was able to avoid local minima and for a time-variant
channel it showed faster recovery times.
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Fig. 1. ISI for the CM (µ = 0.0012), SW (λ = 0.9975) and ACM (α =
0.0975, m1 = 0.9975, γ = 75.19) algorithms. For 4-QAM, N = 27 and
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International Telecommunications Symposium – ITS2002, Natal, Brazil

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

p
1

p 2

CM 
SW 
ACM

Fig. 2. Contour plot of the Godard cost function (E{Ψ2(y)}) for channel H5

with trajectories of the CM (µ = 0.0025), SW (λ = 0.995) and ACM (α =
0.25, m1 = 0.1592, γ = 106) algorithms. Initialization at points p[0] =
[0 1]T , p[0] = [−0.4 0.05]T and p[0] = [0.2 − 0.4]T . For 2-PAM.
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summation limits accordingly in (12) for centroid loca-
tions near the borders, see [1] for details.

Clutter Model We capture the 2D spatial correlation of
the background clutter using a noncausal, spatially ho-
mogeneous Gauss-Markov random field (GMrf) model
[10]. The clutter returns at frame n, Vn(i, j), 1 ≤ i ≤
L, 1 ≤ j ≤ M , are described by the 2D finite difference
equation

Vn(i, j) = βc
v [Vn(i − 1, j) + Vn(i + 1, j)]

+ βc
h [Vn(i, j − 1) + Vn(i, j + 1)] + Un(i, j)(13)

where E [Vn(i, j)Un(p, r)] = σ2
c δi−p, j−r. The assump-

tion of zero-mean clutter implies a pre-processing of the
data that subtracts the mean of the background.

3.1. Likelihood Function

Let yn be a 1D long-vector representation of the frame
Yn obtained by either row or columnwise scanning.
Assuming a 2D GMrf background as in (13) and deter-
ministic signature parameters {ak,l}, we use the results
in [1] to write the likelihood function of the observed
nth frame as

p(yn | xn,1, xn,2)∞ exp

[
2λ(xn,1, xn,2) − ρ

2σ2
c

]
. (14)

where ρ is a target energy term that is constant away
from the image borders, see [1] for details. The function
λ in (14) is in turn given by [1]

λ(xn,1, xn,2) =

rs∑

k=−ri

ls∑

l=−li

ak,lµ(x∗
n(1) + k, x∗

n(2) + l)

(15)
where x∗

n(i), i = 1, 2, are obtained respectively from
(10) and (11), and µ(p, r) is the output of the differen-
tial operator

µ(p, r) = Yn(p, r) − βc
h [Yn(p, r − 1) + Yn(p, r + 1)]

− βc
v [Yn(p − 1, r) + Yn(p + 1, r)] (16)

with Dirichlet (identically zero) boundary conditions.
Equation (15) is valid for ri + 1 ≤ x∗

n(1) ≤ L − rs and
li +1 ≤ x∗

n(2) ≤ M − ls. For centroid positions close to
the image borders, the summation limits in (15) must
be varied accordingly as explained in [1]. Intuitively,
we can interpret the function λ in (15) as the concate-
nation of two linear filtering operations: first, we pass
the image through a noncausal differential filter to gen-
erate a residual error image and, then, we apply to this
error image a 2D correlation filter that is matched to
the (known) 2D target template.

4. PARTICLE FILTER TRACKER

The on-line Bayesian estimation problem can be sum-
marized as follows: given a sequence of observed frames
Yn

1 = {y1, y2 . . . yn} and the probability density func-
tion (pdf) p(x0) of the initial (continuous-valued) tar-
get state, x0, compute recursively the posterior pdf
p(xn | Yn

1 ), for n ≥ 1, using the Markovian transi-
tion kernel, p(xn+1 | xn), and the likelihood function,
p(yn | xn). From the posterior pdf, we can then infer
the value of the hidden (unobserved) state at instant
n, xn, using some optimality criteria, e.g. minimum
mean-square error (MMSE) or maximum a posteriori
(MAP).

Particle filters [3] are a simulation approach to Bayes-
ian estimation in which the posterior pdf is represented

at each instant n by a set of particles
{
x

(j)
n

}
, 1 ≤ j ≤

Np, with associated weights w
(j)
n . The MMSE estimate

of the hidden state xn is then obtained simply as [3]
a weighted average of the particles. Alternatively, the
MAP estimate can be obtained [4] from the histogram
of the particles.

Ideally, we would like the particles to be samples

from the true posterior in which case all weights w
(j)
n

would be identical and equal to 1/Np. In practice, how-
ever, either the posterior pdf is unavailable or difficult
to sample from. An alternative approach known as
sequential importance sampling (SIS) [4] is to sample

x
(j)
n sequentially from an importance function π(xn |

Xn−1
0 ,Yn

1 ) and update the weights using the recursion

w(j)
n ∞w

(j)
n−1

p(yn | x
(j)
n ) p(x

(j)
n | x

(j)
n−1)

π(x
(j)
n | (X(j))n−1

0 , Yn
1 )

,

Np∑

j=1

w(j)
n = 1 .

(17)
In principle, the importance function π can be arbitrary
provided that it satisfies two restrictions [4]

1. π(Xn
0 | Yn

1 ) must have the same support as p(Xn
0 |

Yn
1 ) and be strictly positive and integrable to 1

in that support.

2. π(Xn
0 | Yn

1 ) = π(xn | Xn−1
0 ,Yn

1 )π(Xn−1
0 | Yn−1

1 ).

4.1. Bootstrap Tracker

The first practical SIS filter was the bootstrap filter [5],
where the Markovian transition kernel p(xn | xn−1) is
used as the importance function π(xn | Xn−1

0 ,Yn
1 ).

The weight update equation reduces then to

w(j)
n ∞w

(j)
n−1p(yn | x(j)

n )

Np∑

j=1

w(j)
n = 1 . (18)



The key innovation of the bootstrap filter [5] was to
introduce an additional particle selection step to avoid
the so-called degeneracy phenomenon [3], i.e., the ten-
dency of the distribution of the particle weights to be-
come skewed as the number of SIS iterations increases.
The selection step proposed in [5] consisted simply of

resampling Np times from the set
{
x

(j)
n

}
with replace-

ment according to the particle weights so that low-
weight particles are discarded whereas high-weight par-
ticles are multiplied. The new weights after the resam-
pling step are all reset then to 1/Np.

Using the motion, target and clutter models from
sections 2 and 3 and recalling the expressions for the
Markovian transition kernel in subsection 2.1 and for
the likelihood function in subsection 3.1, we present in
Table 1 a bootstrap filter algorithm for target tracking
in image sequences.

1.Initialization For j = 1, . . . , Np

• Draw x
(j)
0,1 ∼ p(x0,1), x

(j)
0,2 ∼ p(x0,2),

make w
(j)
0 = 1/Np and set n = 1.

2. Importance Sampling Step For j = 1, . . . , Np

• Draw x̃
(j)
n,1 ∼ N(Fx

(j)
n−1,1,Q)

and x̃
(j)
n,2 ∼ N(Fx

(j)
n−1,2,Q).

• Compute the importance weights

w̃
(j)
n ∞w

(j)
n−1 p(yn | x̃

(j)
n,1, x̃

(j)
n,2)

∑Np

j=1 w̃
(j)
n = 1

using equations (14), (15), and (16).
3. Selection Step
• Generate a new set of samples{
x

(j)
n =

[
(x

(j)
n,1)

T (x
(j)
n,2)

T
]T

}
1 ≤ j ≤ Np

such that P (x
(j)
n = x̃

(k)
n ) = w̃

(k)
n .

• Make w
(j)
n = 1/Np, 1 ≤ j ≤ Np.

• While n ≤ Nmax, set n = n + 1
and go back to step 2.

Table 1: Algorithm I: Bootstrap filter for target track-
ing in 2D cluttered image sequences.

Clutter Adaptation When the clutter model parame-

ters βc
h, βc

v and σ2
c are unknown, they must be esti-

mated from the observed data. For computational sim-
plicity, we use in this paper a suboptimal approach to
clutter adaptation where we estimate the GMrf clutter
parameters directly from each available sensor frame
Yn using a variation of approximate maximum like-

lihood (AML) parameter estimation algorithm intro-
duced in [10].

5. LINEARIZED KALMAN-BUCY

TRACKER

We compare the proposed nonlinear bootstrap tracker
to the association of a single frame maximum likelihood
(ML) position estimator and a linear Kalman-Bucy fil-
ter. The preliminary ML estimates of the 2D pixel
location of the target centroid are given by

x̂∗
n = arg max

x∗
n

p(yn | xn) . (19)

The pixel estimates of the centroid location are con-
verted to continuous space and treated as decoupled
noisy measurements of the true centroid positions in
each dimension. A conventional Kalman-Bucy filter
with knowledge of the state dynamics is then used to
refine the preliminary ML estimates. Table 2 summa-
rizes the algorithm. In Table 2, σ2

v,i denotes the vari-
ance of the ML centroid position estimation error in
the dimension i and C is the row vector C = [1 0]. We
denote the mean and covariance matrix of x0,i, i = 1, 2,
respectively by x0,i and Σ0,i. The symbols x̂n|n,i and
Σn|n,i denote respectively the Kalman filter estimate of
the target state xn,i at instant n in dimension i and its
associated error covariance matrix.

Initialization For i = 1, 2
• x̂0|0,i = x0,i Σ0|0,i = Σ0,i

For n = 1 to Nmax
ML Step
Compute p(yn | xn,1(1), xn,2(1))
using equations (14), (15) and (16), make
(ẑ1, ẑ2) = arg maxL p(yn | xn,1(1), xn,2(1))
and x̃n,i = round(ẑi ∆i), i = 1, 2
Kalman Filter Step For i=1,2
• x̂n|n−1,i = Fx̂n−1|n−1,i

• Σn|n−1,i = FΣn−1|n−1,iF
T + Q

• Kn,i = Σn|n−1,iC
T (CΣn|n−1,iC

T + σ2
v,i︸ ︷︷ ︸

Sn|n−1

)−1

• x̂n|n,i = x̂n|n−1,i + Kn,i(x̃n,i − Cx̂n|n−1,i)
• Σn|n,i = Σn|n−1,i − Kn,iSn|n−1,iK

T
n,i

End of for loop

Table 2: Algorithm II: Association ML Estimator +
Linear Kalman-Bucy Filter (for comparison purposes
only).

6. PERFORMANCE RESULTS

We compare next the tracking performances of the boot-
strap tracker and the KBf tracker using a simulated
image sequence that was generated from real infrared
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Figure 1: Real IRAR intensity image from Portage,
USA (Lincoln Laboratory IRAR collection).

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(a) (b)

Figure 2: (a) Simulated cluttered target image,
PTCR= 7.3 dB, (b) Clutter-free target template shown
as a binary image.

airborne radar (IRAR) intensity imagery. The base im-
age, shown in Figure 1, is an aerial scene from Portage
USA, extracted from the IRAR image collection at
Johns Hopkins University’s Center for Imaging Sciences.
For details on the simulation of the clutter background
sequence, see [11]. We add to the background sequence
a simulated target template that moves according to
a white noise acceleration model, see section 2, with
parameters q = 10 and ∆ = 4ms. The spatial res-
olution (pixel size) is ∆1 = ∆2 = 20cm. The im-
age frame extends from 0 to 30 meters (150 pixels)
in both the horizontal and vertical dimensions. The
target’s (continuous) initial vertical and horizontal po-
sitions are uniformly distributed respectively between
4 and 12 meters, and between 4 and 8 meters. The
initial target velocity is 10 m/s in both dimensions.
Figures 2(a) and (b) show respectively the simulated
cluttered and clutter-free image of a target centered at
pixel location (40, 40). The peak target-to-clutter ra-
tio (PTCR) in Figure 2(a) is 7.3 dB. Figures 3 and 4
show the root mean-square error (RMSE) in meters of

the MAP target centroid position estimates for a 3400-
particle bootstrap tracker, respectively in the vertical
and horizontal directions. The error curves were ob-
tained from 45 Monte Carlo runs with PTCR lowered
to -5.7 dB and 14 frames per run. The plots in Figures 3
and 4 show good steady-state tracking performance and
low target acquisition time for the proposed bootstrap
tracker.
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Figure 3: Bootstrap tracking performance, PTRC= -
5.7 dB, vertical dimension.
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Figure 4: Bootstrap tracking performance, PTRC= -
5.7 dB, horizontal dimension.

In the sequel, we compare the proposed bootstrap
tracker to the linearized KBf tracker described in Ta-
ble 2. Figure 5 shows the vertical RMS centroid po-
sition estimation error in meters, respectively for the
3400-particle bootstrap tracker with MAP estimation
criterion (dashed line) and for the KBf tracker (solid
line). The corresponding results for the horizontal di-
mension are shown in Figure 6. The performance curves
were also estimated from 45 Monte Carlo runs with
PTCR = -5.7 dB. We see from the plots in Figures 5
and 6 that the association ML/KBf has a very poor
tracking performance, basically failing to acquire and



track the target. Conversely, despite the low PTCR
and poor visibility of the target, the proposed nonlin-
ear bootstrap filter tracks the simulated vehicle with a
final tracking error after 14 frames of less than 1 pixel
within the image resolution.
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Figure 5: RMSE in meters for the bootstrap tracker
(dashed) and the KBf tracker (solid), PTCR = -5.7
dB, vertical dimension.
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Figure 6: RMSE in meters for the bootstrap tracker
(dashed) and the KBf tracker (solid), PTCR = -5.7
dB, horizontal dimension.

7. CONCLUSIONS

We introduced in this paper a new particle filter (boot-
strap) algorithm for direct target tracking from image
sequences and tested its performance using a Monte
Carlo simulation. The simulation results show good
tracking performance for the proposed tracker using
3400 particles and 14 image frames in a scenario of
low target-to-clutter ratio. In contrast to the nonlin-
ear boostrap tracker, a linearized Kalman-Bucy tracker
fails to acquire and track the target under the same
simulation conditions.
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summation limits accordingly in (12) for centroid loca-
tions near the borders, see [1] for details.

Clutter Model We capture the 2D spatial correlation of
the background clutter using a noncausal, spatially ho-
mogeneous Gauss-Markov random field (GMrf) model
[10]. The clutter returns at frame n, Vn(i, j), 1 ≤ i ≤
L, 1 ≤ j ≤ M , are described by the 2D finite difference
equation

Vn(i, j) = βc
v [Vn(i − 1, j) + Vn(i + 1, j)]

+ βc
h [Vn(i, j − 1) + Vn(i, j + 1)] + Un(i, j)(13)

where E [Vn(i, j)Un(p, r)] = σ2
c δi−p, j−r. The assump-

tion of zero-mean clutter implies a pre-processing of the
data that subtracts the mean of the background.

3.1. Likelihood Function

Let yn be a 1D long-vector representation of the frame
Yn obtained by either row or columnwise scanning.
Assuming a 2D GMrf background as in (13) and deter-
ministic signature parameters {ak,l}, we use the results
in [1] to write the likelihood function of the observed
nth frame as

p(yn | xn,1, xn,2)∞ exp

[
2λ(xn,1, xn,2) − ρ

2σ2
c

]
. (14)

where ρ is a target energy term that is constant away
from the image borders, see [1] for details. The function
λ in (14) is in turn given by [1]

λ(xn,1, xn,2) =

rs∑

k=−ri

ls∑

l=−li

ak,lµ(x∗
n(1) + k, x∗

n(2) + l)

(15)
where x∗

n(i), i = 1, 2, are obtained respectively from
(10) and (11), and µ(p, r) is the output of the differen-
tial operator

µ(p, r) = Yn(p, r) − βc
h [Yn(p, r − 1) + Yn(p, r + 1)]

− βc
v [Yn(p − 1, r) + Yn(p + 1, r)] (16)

with Dirichlet (identically zero) boundary conditions.
Equation (15) is valid for ri + 1 ≤ x∗

n(1) ≤ L − rs and
li +1 ≤ x∗

n(2) ≤ M − ls. For centroid positions close to
the image borders, the summation limits in (15) must
be varied accordingly as explained in [1]. Intuitively,
we can interpret the function λ in (15) as the concate-
nation of two linear filtering operations: first, we pass
the image through a noncausal differential filter to gen-
erate a residual error image and, then, we apply to this
error image a 2D correlation filter that is matched to
the (known) 2D target template.

4. PARTICLE FILTER TRACKER

The on-line Bayesian estimation problem can be sum-
marized as follows: given a sequence of observed frames
Yn

1 = {y1, y2 . . . yn} and the probability density func-
tion (pdf) p(x0) of the initial (continuous-valued) tar-
get state, x0, compute recursively the posterior pdf
p(xn | Yn

1 ), for n ≥ 1, using the Markovian transi-
tion kernel, p(xn+1 | xn), and the likelihood function,
p(yn | xn). From the posterior pdf, we can then infer
the value of the hidden (unobserved) state at instant
n, xn, using some optimality criteria, e.g. minimum
mean-square error (MMSE) or maximum a posteriori
(MAP).

Particle filters [3] are a simulation approach to Bayes-
ian estimation in which the posterior pdf is represented

at each instant n by a set of particles
{
x

(j)
n

}
, 1 ≤ j ≤

Np, with associated weights w
(j)
n . The MMSE estimate

of the hidden state xn is then obtained simply as [3]
a weighted average of the particles. Alternatively, the
MAP estimate can be obtained [4] from the histogram
of the particles.

Ideally, we would like the particles to be samples

from the true posterior in which case all weights w
(j)
n

would be identical and equal to 1/Np. In practice, how-
ever, either the posterior pdf is unavailable or difficult
to sample from. An alternative approach known as
sequential importance sampling (SIS) [4] is to sample

x
(j)
n sequentially from an importance function π(xn |

Xn−1
0 ,Yn

1 ) and update the weights using the recursion

w(j)
n ∞w

(j)
n−1

p(yn | x
(j)
n ) p(x

(j)
n | x

(j)
n−1)

π(x
(j)
n | (X(j))n−1

0 , Yn
1 )

,

Np∑

j=1

w(j)
n = 1 .

(17)
In principle, the importance function π can be arbitrary
provided that it satisfies two restrictions [4]

1. π(Xn
0 | Yn

1 ) must have the same support as p(Xn
0 |

Yn
1 ) and be strictly positive and integrable to 1

in that support.

2. π(Xn
0 | Yn

1 ) = π(xn | Xn−1
0 ,Yn

1 )π(Xn−1
0 | Yn−1

1 ).

4.1. Bootstrap Tracker

The first practical SIS filter was the bootstrap filter [5],
where the Markovian transition kernel p(xn | xn−1) is
used as the importance function π(xn | Xn−1

0 ,Yn
1 ).

The weight update equation reduces then to

w(j)
n ∞w

(j)
n−1p(yn | x(j)

n )

Np∑

j=1

w(j)
n = 1 . (18)



The key innovation of the bootstrap filter [5] was to
introduce an additional particle selection step to avoid
the so-called degeneracy phenomenon [3], i.e., the ten-
dency of the distribution of the particle weights to be-
come skewed as the number of SIS iterations increases.
The selection step proposed in [5] consisted simply of

resampling Np times from the set
{
x

(j)
n

}
with replace-

ment according to the particle weights so that low-
weight particles are discarded whereas high-weight par-
ticles are multiplied. The new weights after the resam-
pling step are all reset then to 1/Np.

Using the motion, target and clutter models from
sections 2 and 3 and recalling the expressions for the
Markovian transition kernel in subsection 2.1 and for
the likelihood function in subsection 3.1, we present in
Table 1 a bootstrap filter algorithm for target tracking
in image sequences.

1.Initialization For j = 1, . . . , Np

• Draw x
(j)
0,1 ∼ p(x0,1), x

(j)
0,2 ∼ p(x0,2),

make w
(j)
0 = 1/Np and set n = 1.

2. Importance Sampling Step For j = 1, . . . , Np

• Draw x̃
(j)
n,1 ∼ N(Fx

(j)
n−1,1,Q)

and x̃
(j)
n,2 ∼ N(Fx

(j)
n−1,2,Q).

• Compute the importance weights

w̃
(j)
n ∞w

(j)
n−1 p(yn | x̃

(j)
n,1, x̃

(j)
n,2)

∑Np

j=1 w̃
(j)
n = 1

using equations (14), (15), and (16).
3. Selection Step
• Generate a new set of samples{
x

(j)
n =

[
(x

(j)
n,1)

T (x
(j)
n,2)

T
]T

}
1 ≤ j ≤ Np

such that P (x
(j)
n = x̃

(k)
n ) = w̃

(k)
n .

• Make w
(j)
n = 1/Np, 1 ≤ j ≤ Np.

• While n ≤ Nmax, set n = n + 1
and go back to step 2.

Table 1: Algorithm I: Bootstrap filter for target track-
ing in 2D cluttered image sequences.

Clutter Adaptation When the clutter model parame-

ters βc
h, βc

v and σ2
c are unknown, they must be esti-

mated from the observed data. For computational sim-
plicity, we use in this paper a suboptimal approach to
clutter adaptation where we estimate the GMrf clutter
parameters directly from each available sensor frame
Yn using a variation of approximate maximum like-

lihood (AML) parameter estimation algorithm intro-
duced in [10].

5. LINEARIZED KALMAN-BUCY

TRACKER

We compare the proposed nonlinear bootstrap tracker
to the association of a single frame maximum likelihood
(ML) position estimator and a linear Kalman-Bucy fil-
ter. The preliminary ML estimates of the 2D pixel
location of the target centroid are given by

x̂∗
n = arg max

x∗
n

p(yn | xn) . (19)

The pixel estimates of the centroid location are con-
verted to continuous space and treated as decoupled
noisy measurements of the true centroid positions in
each dimension. A conventional Kalman-Bucy filter
with knowledge of the state dynamics is then used to
refine the preliminary ML estimates. Table 2 summa-
rizes the algorithm. In Table 2, σ2

v,i denotes the vari-
ance of the ML centroid position estimation error in
the dimension i and C is the row vector C = [1 0]. We
denote the mean and covariance matrix of x0,i, i = 1, 2,
respectively by x0,i and Σ0,i. The symbols x̂n|n,i and
Σn|n,i denote respectively the Kalman filter estimate of
the target state xn,i at instant n in dimension i and its
associated error covariance matrix.

Initialization For i = 1, 2
• x̂0|0,i = x0,i Σ0|0,i = Σ0,i

For n = 1 to Nmax
ML Step
Compute p(yn | xn,1(1), xn,2(1))
using equations (14), (15) and (16), make
(ẑ1, ẑ2) = arg maxL p(yn | xn,1(1), xn,2(1))
and x̃n,i = round(ẑi ∆i), i = 1, 2
Kalman Filter Step For i=1,2
• x̂n|n−1,i = Fx̂n−1|n−1,i

• Σn|n−1,i = FΣn−1|n−1,iF
T + Q

• Kn,i = Σn|n−1,iC
T (CΣn|n−1,iC

T + σ2
v,i︸ ︷︷ ︸

Sn|n−1

)−1

• x̂n|n,i = x̂n|n−1,i + Kn,i(x̃n,i − Cx̂n|n−1,i)
• Σn|n,i = Σn|n−1,i − Kn,iSn|n−1,iK

T
n,i

End of for loop

Table 2: Algorithm II: Association ML Estimator +
Linear Kalman-Bucy Filter (for comparison purposes
only).

6. PERFORMANCE RESULTS

We compare next the tracking performances of the boot-
strap tracker and the KBf tracker using a simulated
image sequence that was generated from real infrared



20 40 60 80 100 120 140

20

40

60

80

100

120

140

Figure 1: Real IRAR intensity image from Portage,
USA (Lincoln Laboratory IRAR collection).
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Figure 2: (a) Simulated cluttered target image,
PTCR= 7.3 dB, (b) Clutter-free target template shown
as a binary image.

airborne radar (IRAR) intensity imagery. The base im-
age, shown in Figure 1, is an aerial scene from Portage
USA, extracted from the IRAR image collection at
Johns Hopkins University’s Center for Imaging Sciences.
For details on the simulation of the clutter background
sequence, see [11]. We add to the background sequence
a simulated target template that moves according to
a white noise acceleration model, see section 2, with
parameters q = 10 and ∆ = 4ms. The spatial res-
olution (pixel size) is ∆1 = ∆2 = 20cm. The im-
age frame extends from 0 to 30 meters (150 pixels)
in both the horizontal and vertical dimensions. The
target’s (continuous) initial vertical and horizontal po-
sitions are uniformly distributed respectively between
4 and 12 meters, and between 4 and 8 meters. The
initial target velocity is 10 m/s in both dimensions.
Figures 2(a) and (b) show respectively the simulated
cluttered and clutter-free image of a target centered at
pixel location (40, 40). The peak target-to-clutter ra-
tio (PTCR) in Figure 2(a) is 7.3 dB. Figures 3 and 4
show the root mean-square error (RMSE) in meters of

the MAP target centroid position estimates for a 3400-
particle bootstrap tracker, respectively in the vertical
and horizontal directions. The error curves were ob-
tained from 45 Monte Carlo runs with PTCR lowered
to -5.7 dB and 14 frames per run. The plots in Figures 3
and 4 show good steady-state tracking performance and
low target acquisition time for the proposed bootstrap
tracker.
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Figure 3: Bootstrap tracking performance, PTRC= -
5.7 dB, vertical dimension.
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Figure 4: Bootstrap tracking performance, PTRC= -
5.7 dB, horizontal dimension.

In the sequel, we compare the proposed bootstrap
tracker to the linearized KBf tracker described in Ta-
ble 2. Figure 5 shows the vertical RMS centroid po-
sition estimation error in meters, respectively for the
3400-particle bootstrap tracker with MAP estimation
criterion (dashed line) and for the KBf tracker (solid
line). The corresponding results for the horizontal di-
mension are shown in Figure 6. The performance curves
were also estimated from 45 Monte Carlo runs with
PTCR = -5.7 dB. We see from the plots in Figures 5
and 6 that the association ML/KBf has a very poor
tracking performance, basically failing to acquire and



track the target. Conversely, despite the low PTCR
and poor visibility of the target, the proposed nonlin-
ear bootstrap filter tracks the simulated vehicle with a
final tracking error after 14 frames of less than 1 pixel
within the image resolution.
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Figure 5: RMSE in meters for the bootstrap tracker
(dashed) and the KBf tracker (solid), PTCR = -5.7
dB, vertical dimension.
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Figure 6: RMSE in meters for the bootstrap tracker
(dashed) and the KBf tracker (solid), PTCR = -5.7
dB, horizontal dimension.

7. CONCLUSIONS

We introduced in this paper a new particle filter (boot-
strap) algorithm for direct target tracking from image
sequences and tested its performance using a Monte
Carlo simulation. The simulation results show good
tracking performance for the proposed tracker using
3400 particles and 14 image frames in a scenario of
low target-to-clutter ratio. In contrast to the nonlin-
ear boostrap tracker, a linearized Kalman-Bucy tracker
fails to acquire and track the target under the same
simulation conditions.
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