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Abstract— In this paper we investigate the use of adap-
tive minimum bit error rate (MBER) algorithms for channel
equalisation in Discrete Multitone (DMT) systems. These
algorithms approximate the bit error rate (BER) from train-
ing data using linear equaliser structures operating in the
frequency domain. A comparative analysis of DMT systems
with linear equalisers, employing minimum mean squared
error (MMSE) and MBER algorithms is carried out. Com-
puter simulation experiments show that the MBER algo-
rithms outperform the LMS approach and can save trans-
mitting power for the same BER performance.

I. INTRODUCTION

Recent advances in multimedia applications and the de-
velopment of the Internet have increased the demand for
high-speed digital communications, which require broad-
band channels. The spectral shaping of these broad-
band communication channels imposes several limitations
to data transmission such as intersymbol interference (IST)
and fading [1], [2]. Amongst the previously reported ap-
proaches to mitigate ISI we have full channel equalisation
and multicarrier modulation (MCM). Full channel equal-
isation combats the spectral shaping effect of a channel
using a filter which is called an equaliser. Although linear
equalisers are easy to implement, their computational com-
plexity under high sampling rates is too much complex for
commercial applications. Multicarrier modulation is one
possible solution for high-speed digital communications. In
contrast to single carrier modulation, multicarrier modula-
tion avoids full equalisation of a channel, uses available
bandwidth efficiently by controlling the power and num-
ber of bits in each subchannel, is robust against impulsive
noise and fast fading due to its long symbol duration, and
avoids narrowband distortion by simply disabling one or
more subchannels [1],[2].

In multicarrier modulation the original hostile commu-
nication channel, that usually exhibit deep spectral nulls,
is partitioned into several small bandwidth subchannels. If
a subchannel is narrow enough so that the channel gain in
the subchannel is approximately a constant, then no ISI
would occur in this subchannel. Thus, information can be
transmitted over these narrowband subchannels without
ISI, and the total number of bits transmitted is the sum
of the number of bits transmitted in each subchannel. If
the available power were distributed over the subchannels
using the SNR of each subchannel, then high spectral ef-
ficiency could be achieved. One of the most efficient ways
to partition a channel into a large number of narrowband
channels is the fast Fourier transform (FFT). Multicarrier

modulation implemented via a FFT is called Discrete Mul-
titone (DMT) modulation or Orthogonal Frequency Divi-
sion Multiplexing (OFDM). In transmission, the key dif-
ference between the two methods is in the assignment of
bits to each subchannel. Indeed, DMT and OFDM differ
in the loading algorithm, since OFDM puts an equal num-
ber of bits on all subchannels, rather than optimising the
number of bits and the energy in each subchannel, as in
DMT. Moreover, DMT is deployed in wireline applications
such as telephone lines, whereas OFDM is used for wireless
applications [1], [2].

Channel equalisers in DMT systems employing the min-
imum mean squared error (MMSE) [3]-[4] criterion have
become rather successful, since they usually show good
performance and have simple adaptive implementation [3]-
[4]. However, it is well known that the MSE cost func-
tion is not optimal in digital communications applications,
and the most appropriate cost function is the bit error
rate (BER) [5],[6]. The approximate minimum bit error
rate (AMBER) [5] and the least bit error rate (LBER) [6]
are two of the most successful and suitable algorithms for
adaptive implementation. However, these minimum bit er-
ror rate (MBER) algorithms usually require long training
sequences to converge to lower bit error rates than those
achieved by the techniques that employ the MSE cost func-
tion. Since DMT systems require an initialisation period to
adjust their parameters and perform power allocation on
the subchannels, these systems can cope with long training
sequences and are suitable to MBER algorithms.

In this work, we investigate the use of adaptive MBER
algorithms for channel equalisation in DMT systems us-
ing QAM signal constellations. Firstly, the channel is esti-
mated using a binary training sequence to adjust its param-
eters via stochastic gradient algorithms. Then, we perform
power allocation using Chow “s algorithm [1] on the sub-
channels and determine the modulation scheme (no trans-
mission, 4-QAM or 16-QAM) to be used on each subchan-
nel. We conduct a comparative analysis of linear equalisers,
employing the LMS [7], the AMBER [5] and the LBER [6].
Computer simulation experiments show that the MBER
approaches outperform the traditional MMSE solution via
the LMS algorithm, whilst requiring no additional compu-
tational complexity.

This paper is organised as follows. Section II briefly
describes the DMT communication system model. The
channel equalisation problem and stochastic gradient al-
gorithms are detailed in Sections III and IV. Section V



presents and discusses the simulation results and Section
VI gives the concluding remarks of this work.

II. DMT SYSTEM MODEL

We assume a DMT communication system based on
digital filter banks with M channels created by the Fast
Fourier Transform (FFT) that transmits modulated sym-
bols through a telephone-type communication channel and
followed by an adaptive equaliser, as shown in Fig. 1. To
describe the symbol mapping in a DMT system based on
the FFT, we assume that the symbol sequence z,,(k), where
n=20,1,2,...,M — 1. In the case of real time-domain
signals, there is a restriction that implies that there are
M /2 complex dimensions when M is even [1],[2]. To rep-
resent QAM symbols, an in-phase component z. (k) and
a quadrature component ¢, (k) are employed to form a
complex sequence x, (k) with M points, as expressed by:
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The inverse FFT (IFFT) is then applied to the complex
sequence given in (1) and tranformed into another set given
by:

M-1
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Note that this approach ensures that the IFFT yields a
real sequence. The M signals are then interpolated and
interleaved in time, resulting in a composite signal u(k)
which operates at a rate M times higher.

Consider a discrete time communication channel H,
where u(k) is the composite transmitted signal in the fre-
quency domain, H,(k) is the channel frequency response
in subchannel n for the DMT tone k and e,(k) is addi-
tive white gaussian noise (AWGN) with power spectrum
density 2. The output signal v, (k) of the channel n is
expressed by:

rn(k) = Hy(K)un(k) + en(k) = sp(k) +en(k)  (3)

where s, (k) is the channel output without noise for sub-
channel n.

At the receiver the discrete-time signal is equalised in the
frequency domain, forming the set of signals v, (k), dein-
terleaved and decimated. Applying the FFT to these M
signals we obtain the estimated signals &, (k) as expressed
by:
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Fig. 1. Block diagram of the DMT system.

where M is the number of subchannels. Note that after
the complex symbols &, (k) are estimated, the decoder per-
forms the demapping and detection of the QAM symbols.

III. CHANNEL EQUALISATION

The adaptive channel equalisation problem involves the
application of a receiving filter, that adjusts its coefficients
in order to minimise a given objective function [7]. The
equaliser must be adaptive in order to track the signal vari-
ations imposed by the channel, however, it requires a de-
sired signal taken from a training sequence to adjust its
parameters, as shown in Fig. 2.
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Fig. 2. Block diagram of the adaptive equalisation problem.

The linear transversal equaliser consists of a linear filter

with N + 1 taps described by the vector w = [wg wN]T
The linear equaliser output is given by:
vn(k) = Wi rn(k) ()

where r,,(k) = [rn(k) ... ro(k — N)] is the observed out-
put signal vector of the channel of subchannel n. The deci-
sion on the transmitted symbol z(k) is determined by the
equaliser output signal.



IV. STOCHASTIC GRADIENT ALGORITHMS

In this section, we describe stochastic gradient algo-
rithms that adjust the parameters of the receivers based
on the minimisation of the mean square error (MSE) and
the bit error rate (BER) cost functions. Note that during
the training period, the DMT system employs binary sig-
nalling and after the training period, the system uses QAM
modulation, since it is simpler to use MBER algorithms in
this situation.

A. The LMS algorithm

The adaptive equalisation solution for the linear
equaliser via the LMS algorithm [7] is based on the MMSE
error criterion formed by the error signal e, (k) = d, (k) —
yn(k), and is described by:

wp(k +1) = wp(k) + pey(k)rn (k) (6)

where d, is the desired signal taken from the training
sequence, r,(k) is the observation vector for the linear
equaliser, y, (k) is the estimated symbol after demapping
and p is the algorithm step size.

B. The AMBER algorithm

Given a transmitted binary training sequence d, the bit
error probability P(e|d) is expressed by:

P(eld) = P(dn(k)sgn(y(k)) = —1)

P(eld) = P(sgn(dn(k)yn(k)) = —1) = P(yn(k) <0) (7)

where y,,(k) is the decoded symbol or bit for channel n
and d, (k) is the desired symbol taken from the training
sequence.

The equaliser solution that minimises the BER criterion
via the AMBER algorithm [5] for a single channel system
employs the vector function g(w(k)) [5] to approximate
an expression for a coefficient vector w(k) that achieves
a MBER performance with linear receiver structures, as
described by:

g(w(k)) = E

where d(k) is the desired transmitted symbol taken from
the training sequence and (.) is the Gaussian error func-
tion. A simple stochastic solution for w,, (k) can be derived
by using g(w(k)) and adjusting the receiver weights by:

= w(k) + pg(w(k)) 9)

Note that for linear receiver structures the quantity

Q (W) inside the expected value operator in (8)

corresponds to the conditional bit error probability given
the product d(k)s(k). This quantity can be replaced in (8)
by an error indicator function igq(k) given by:

w(k+1)

ialK) = 51~ sgn(du(B)y(K))) (10)

where y(k) is the decoded symbol and d(k) is the desired
signal provided by the training sequence.

Following this approach, the AMBER algorithm, as de-
vised for linear equalisers [5], is described by the following

equalities:
d(k)wT (k)s

w(k) + [ E[ia(k) | d(k)s(k)]d(k)s(F)|
ik + 1) = w(k) + pB[ia(k)d(K)s(k)]

Since s(k) = r(k) — n(k), and iq(k) and d(k) are
statistically independent, we have Elig(k)d(k)n(k)] =
Eld(k)]Eliqa(k)n(k)] = 0 and thus:

wk+1)=w(k)+uE

w(k+1) =

w(k+1) (11)
The AMBER stochastic gradient update equation for the
linear equaliser operating in the frequency domain in a sys-
tem with multiple channels is given by:

= w(k) + pE [z’d(k)d(k)r(k)]

wi(k +1) = wy(k) + pia, (k)dn(k)rn (k) (12)
Note that the expression in (6) equal (12) if we replace
en(k) by iq(k)d, (k). In practice, a modified error indica-
tor function iq, (k) = 3(1 — sgn(d,(k)yn(k) — 7)) is em-
ployed, where the threshold 7 is responsible for increasing
the algorithm rate of convergence. This algorithm updates
when an error is made and also when an error is almost
made, becoming a smarter choice for updating the filter
coefficients.

C. The LBER algorithm

Considering a binary signalling communication system,
the equaliser BER depends on the distribution of the de-
cision variable y(k), which is a function of the weights of
the equaliser. The sign-adjusted decision variable for the
linear equaliser ys(k) = sgn(xz(k — D))y(k) is drawn from
a Gaussian mixture, described by:

ys(k) = sgn(z(k — D)) (w'Hx(k) + w'n(k))

ys(k) = sgn(x(k — D))y’ (k) + n'(k)

where the first term of (13) is the noise free sign-adjusted
equaliser output.

Consider that K samples of the transmitted symbols
z(k) and K samples of the received symbols (k) are avail-
able from the samples d(k) = z(k — D) of a binary training
sequence. A kernel density estimate [6] of the p.d.f. of y;
is given by:

(13)
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where p is the radius parameter of the kernel density esti-
mate [6].

Substituting the expected value of the gradient with a
single point estimate, we have:

. B 1
Pys (ys(k)) - K\/ﬁp(WTW)l/2
cap (—(ys —;z;%vEICfr(@)y(k)) ) (15)

The probability of error is estimated by:

0
Po= Pl <0)= [ by (u)dy. = Q<M>

_oo pwTw)1/?
(16)
The gradient term of P, is:
—y(k)2
OP. _ eﬂfp(gpz”v(viw)sgn(d(@) —r(k) wy (k)
Ows V2mp (wTw)1/2 ~ (wTw)3/2
(17)

An algorithm similar to the LMS was devised in [6] by
substituting the exact pdf by its instantaneous estimate
and adjusting the receiver weights such that w7’ (k)w(k) =
1:

(18)

wik +1) = w(k) — [3PGL

ow
The LBER algorithm can be used in a DMT system with

M subchannels to equalise DMT tones in the frequency
domain by using the following expression:

—(y(k))?
22

Walk+ 1) = wa(k) + 4 ) sgn(d(k))

! exr <
Vo P
X (rn(k) — Wy (k)yn(k))

where w(k) = [wg ... wy]is the receiver coefficient vector,
dy (k) is the desired signal taken from the binary training
sequence, Yy, (k) is the decoded binary symbol in the DMT
system for channel n, p is the algorithm step size and p
the radius parameter which is related to the noise standard
deviation o. Whilst in the AMBER, a non-zero 7 defines
a region boundary where the algorithm will continue to
update, in the LBER, the effect of the distance from the
decision boundary is controlled by an exponential term [6].

(19)

V. SIMULATIONS

In this section, we conduct simulation experiments to
assess the BER performance of the linear equalisers oper-
ating with the algorithms described and perform a compar-
ative analysis of them. To evaluate the receivers, we have
simulated their operation under a typical telephone-type
communication channel.

The simulation experiments, conducted to assess the
BER performance of the different algorithms, employed
1000 training symbols averaged over 20 independent ex-
periments. Note that during the training period, the sys-
tem employs binary signalling since the equalisation is per-
formed in the frequency domain and the algorithms were

described for the binary signalling case for the sake of sim-
plicity. The DMT system has M = 256 subchannels and
process 10° data symbols, which have QAM constellations
with 4 and 16 points. Power allocation is performed using
Chow “s algorithm [1] with a rate adaptive loading criterion
on the subchannels. The rate adaptive criterion maximises
the number of bits per symbol subject to a given energy
constraint [1]. This algorithm determines the modulation
scheme (no transmission, 4-QAM or 16-QAM) to be used
on each subchannel given the SN R, the channel gain and
the subchannel gap I'. Furthermore, we use a small fixed
threshold 7 = 0.1 for the AMBER algorithm, p = 802 for
the LBER method and subchannel gap I' = 1. In addition,
the linear equalisers have 1 tap in each channel, since they
operate in the frequency domain, and the stochastic gradi-
ent algorithms operate with 4 = 0.01. We consider a linear
channel with transfer function H(z) = %,
whose frequency response is given in Fig. 3.
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Fig. 3. Frequency response of the channel H(z) = Toi 5 T1o50-7"

The BER performance of the different adaptive algo-
rithms using the DMT system described is shown in Fig.
4. According to the curves the system operating with the
LBER algorithm achieved the best BER performance, fol-
lowed by the AMBER and the LMS algorithm.

The DMT system operating with the LBER algorithm
can save up to 1 dB in comparison with the LMS approach,
for the same SNR. When using the AMBER algorithm,
the DMT system can save up to 0.5 dB in comparison with
the LMS algorithm, whereas the LBER saves up to 0.5 dB
in comparison with the AMBER technique, for the same
SNR.

Note that the LBER algorithm performance is rather
weak at low SN R values, whilst it shows good performance
at high SNR values. On the other hand, the AMBER
algorithm shows good performance at both high and low
SN R, whilst requiring a lower computational complexity,
since due to the presence of the error indicator function
weight updating occurs less frequently.
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Fig. 4. BER performance of the DMT system operating with the
LMS, the AMBER and the LBER algorithms.

VI. CONCLUDING REMARKS

We investigated the use of adaptive minimum bit error
rate (MBER) algorithms for channel equalisation in DMT
system applications. The algorithms approximate the bit
error rate (BER) from training data using linear transversal
equaliser structures operating in the frequency domain. A
comparative analysis of frequency-domain linear equalisers
in DMT systems, employing minimum mean squared error
(MMSE) and MBER algorithms was carried out. Com-
puter simulation experiments have shown that the LBER
and the AMBER approaches outperform the LMS algo-
rithm and can save transmitting power, whilst achieving
the same BER performance.
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