
An Approximate Minimum BER Approach to Channel Equalisation

Using Recurrent Neural Networks

Rodrigo C. de Lamare and Raimundo Sampaio-Neto
CETUC - PUC-RIO, 22453-900, Rio de Janeiro - Brazil

e-mails: delamare@infolink.com.br, raimundo@cetuc.puc-rio.br

Abstract—
In this paper we investigate the use of an approximate

minimum bit error rate (MBER) approach to channel equal-
isation using recurrent neural networks (RNN). We examine
a stochastic gradient adaptive algorithm for approximating
the MBER from training data using RNN structures. A
comparative analysis of linear equalisers and neural equalis-
ers, employing minimum mean squared error (MMSE) and
approximate MBER (AMBER) adaptive algorithms is car-
ried out. Computer simulation experiments show that the
neural equaliser operating with a criterion similar to the
AMBER algorithm outperforms neural receivers using the
MMSE criterion via gradient-type algorithms and linear re-
ceivers with MMSE and MBER techniques.

I. Introduction

Neural networks have recently been used in communi-
cation channel equalisation applications [1-6]. The use of
non-linear structures can combat more effectively intersym-
bol interference (ISI) [5], which arise due to the multipath
effect of radio signals. In the last few years, different arti-
ficial neural networks structures have been used in the de-
sign of channel equalisers: multilayer perceptrons (MLP)
[3], radial-basis functions (RBF) [4], and recurrent neural
networks (RNN) [5,6]. These neural systems make use of
non-linear functions to create decision boundaries in order
to detect transmitted symbols, whilst conventional equalis-
ers employ linear functions to form such decision regions.
Indeed, neural equalisers employing the minimum mean
square error (MMSE) [1-6] criterion have become rather
successful, since they usually show good performance and
have simple adaptive implementation [7]. However, it is
well known that the MSE cost function is not optimal in
digital communications applications, and the most appro-
priate cost function is the bit error rate (BER) [8]. The
approximate minimum bit error rate (AMBER) [8] is one
of the most successful and suitable algorithms for adaptive
implementation using linear receiver structures, provided
the application can handle a long training sequence. In
this work, we investigate the convergence and BER per-
formance of an RNN equaliser operating with a criterion
similar to the AMBER. An extension of the real time recur-
rent learning (RTRL) algorithm, called RTRL-AMBER, is
introduced and used to train the RNN equaliser. We per-
form a comparative analysis of the linear equaliser using
the LMS [1] and the AMBER [8] techniques with the neural
equaliser employing the RTRL [2] and the RTRL-AMBER
algorithms.

This paper is organised as follows. Section II briefly de-
scribes the communication system model and the adaptive
equalisation problem. The RNN receiver is presented in

Section III. Section IV is dedicated to the AMBER and
the RTRL-AMBER algorithms. Section V presents the
simulation results and Section VI the conclusions of this
work.

II. System Model

We assume a BPSK communication system that trans-
mits modulated symbols through a radio-type communica-
tion channel, which is followed by an adaptive equaliser and
a symbol detector, as shown in Fig. 1. Consider a discrete
time communication channel, where x(k) is the ±1 binary
transmitted symbol, h(k) is the channel impulse response
with memory M and n(k) is additive white gaussian noise
(AWGN) with power spectrum density σ2. The output
signal r(k) of the channel is expressed by:

r(k) = s(k) + n(k) =
M∑

i=0

h(i)x(k − i) + n(k) (1)

where s(k) is the channel output without noise.

Fig. 1. Communication channel and receiver.

The channel output vector r(k) =
[
r(k) . . . r(k−N)

]T is
given by:

r(k) = s(k) + n(k) = Hx(k) + n(k) (2)

where x(k) =
[
x(k) . . . x(k −M −N)

]T is the vector with

the channel inputs, n(k) =
[
n(k) . . . n(k−N)

]T is the noise

sample vector, s(k) =
[
s(k) . . . s(k − N)

]T is the vector
without noise and H is a (N + 1)× (M + N + 1) Toeplitz
convolution matrix expressed by:

H =

h(0) . . . h(M) 0 . . . 0
.
..

. . .
.
..

.

..
. . .

.

..
0 . . . 0 h(0) . . . h(M)

 (3)

The adaptive channel equalisation problem involves the
application of a receiving filter, that adjusts its coefficients
in order to minimise a given objective function [7]. The
equaliser can be implemented by a linear structure such

as an FIR filter or by a non-linear system based on an
artificial neural network. The equaliser must be adaptive in
order to track the signal variations imposed by the channel,
however, it requires a desired signal taken from a training
sequence to adjust its parameters, as shown in Fig. 2.

Fig. 2. Block diagram of an adaptive equaliser.

The linear transversal equaliser, depicted in Fig. 2, con-
sists of a linear filter with N + 1 taps described by the
vector w =

[
w0 ... wN

]T . The equaliser output is given
by:

y(k) = wT r(k) (4)

where r(k) =
[
r(k) ... r(k − N)

]T is the observed output
signal vector of the channel.

The decision x̂(k−D) on the transmitted symbol x(k−D)
is determined by the equaliser output signal, x̂(k − D) =
sgn(y(k)) , where D corresponds to the delay imposed by
the channel and the equaliser.

The adaptive equalisation solution via the LMS algo-
rithm [1] is based upon the MMSE error criterion formed
by the error signal e(k) = d(k)− y(k), and is expressed by:

w(k + 1) = w(k) + µe(k)r(k) (5)

where d(k) = x(k−D) is the desired signal taken from the
training sequence and µ is the algorithm step size.

III. Recurrent Neural Networks

Recurrent neural networks (RNN) have one or more feed-
back connections, where each artificial neuron is connected
to the others, as shown in Fig. 3. RNN structures are suit-
able to channel equalisation applications, since they are
able to cope with channel transfer functions that exhibit
deep spectral nulls, forming optimal decision boundaries
and are less computationally demanding than MLP net-
works [5]. To describe RNN systems we use a state-space
approach, where the (N + 1) × 1 vector u(k) corresponds to
the (N +1) states of the artificial network, the (N +1)×1 vec-
tor r(k) to the channel (N + 1) symbols output observation
vector and the output of the neural equaliser y(k) is given
by:

ξ(k) =
[
uT (k − 1) rT (k)

]T (6)

u(k) = tanh(w′T (k)ξ(k)) (7)

y(k) = Cu(k) (8)

where the 2(N +1)× (N +1) matrix w′(k) contains the coeffi-
cients of the RNN receiver, C =

[
1 0 ... 0

]
is the 1× (N + 1)

matrix that defines the number of outputs of the network.
Note that, in this work, we have only one output y(k) per
symbol, which corresponds to the equalised symbol.

Fig. 3. Adaptive equaliser structure based on a recurrent neural
network.

To train the equaliser parameters, we employ a stochas-
tic gradient based adaptive technique called real time re-
current learning (RTRL) [2,5] algorithm. The RTRL algo-
rithm employs the minimum mean square error criterion,
where the error signal is formed by e(k) = d(k)−y(k), and
is expressed by:

Φ(k) = diag
(
sech2(w′T (k)ξ(k))

)
(9)

Uj(k) =
[
0T

u ξT (k) 0T
l

]
(10)

Λj(k + 1) = Φ(k)
[
w′

p(k)Λj(k) + Uj(k)
]

(11)

4w′
j(k) = µΛT

j (k)CT e(k) (12)

w′(k + 1) = w′(k) +4w′(k) (13)

where the index j varies from 1 to N+1, the state dimension-
ality of the neural structure. The matrices Φ(k), Uj(k),
Λj(k), w′

p(k) (a partition of w′(k) as described in [2]) and
4w′

j(k) have dimensions (N + 1)× (N + 1), (N + 1)× 2(N + 1),
(N + 1) × 2(N + 1), (N + 1) × (N + 1) and 2(N + 1) × 1, respec-
tively. Note that 0u and 0l are zero valued matrices with
variable size that depend on j, as detailed in [2], and whose
dimensions are (j−1)×2(N +1) and (N +1−j)×2(N +1), respec-
tively. The decision x̂(k − D) on the transmitted symbol
x(k−D) is determined by the neural equaliser output sig-
nal, x̂(k − D) = sgn(y(k)) , where D corresponds to the
delay imposed by the channel and the equaliser.

IV. Approximate Minimum BER algorithms

In this section, we describe the approximate minimum
bit error rate (AMBER) algorithm [8], and propose an
extension of the real time recurrent learning (RTRL) al-
gorithm [2] to train recurrent neural networks. The new
approach, denoted RTRL-AMBER, is based on a modifi-
cation of the RTRL that incorporates the AMBER update
rule.

Given a transmitted training sequence d, the bit error
probability P (ε|d), for linear and neural receivers, is ex-
pressed by:

P
(
ε|d)

= P
(
d(k)sgn(y(k)) = −1

)

P
(
ε|d)

= P
(
sgn(d(k)y(k)) = −1

)
= P

(
d(k)y(k) < 0

)
(14)

where y(k) is given by (4), for the linear equaliser, and
expressed by (8), in the case of the neural equaliser and
d(k) is the desired symbol taken from the training sequence.

A. The AMBER algorithm

In the AMBER approach, the vector function g(w(k))
[3] is used to approximate an expression for a coefficient
vector w(k) that achieves a MBER performance with linear
receiver structures, as described by:

g(w(k)) = E

[
Q

(
d(k)wT (k)s(k)
‖ w(k) ‖ σ

)
d(k)s(k)

]
(15)

where d(k) is the desired transmitted symbol taken from
the training sequence and Q(.) is the Gaussian error func-
tion. A simple stochastic solution for w can be derived by
using g(w(k)) and adjusting the receiver weights by:

w(k + 1) = w(k) + µg(w(k)) (16)

Note that for linear receiver structures the quantity
Q

(
d(k)wT (k)s(k)
‖w(k)‖σ

)
inside the expected value operator in (15)

corresponds to the conditional bit error probability given
the product d(k)s(k). This quantity can be replaced in (15)
by an error indicator function id(k) given by:

id(k) =
1
2
(1− sgn(d(k)y(k))) (17)

where y(k) is the estimated symbol and d(k) is the de-
sired signal provided by the training sequence. Following
this approach, the AMBER algorithm, as devised for linear
equalisers [8], is described by the following equalities:

w(k + 1) = w(k) + µE

[
Q

(
d(k)wT (k)s(k)
‖ w(k) ‖ σ

)
d(k)s(k)

]

w(k + 1) = w(k) + µE
[
E

[
id(k) | d(k)s(k)

]
d(k)s(k)

]

w(k + 1) = w(k) + µE
[
id(k)d(k)s(k)

]

Since s(k) = r(k) − n(k), and id(k) and d(k) are
statistically independent, we have E[id(k)d(k)n(k)] =
E[d(k)]E[id(k)n(k)] = 0 and thus:

w(k + 1) = w(k) + µE
[
id(k)d(k)r(k)

]
(18)

The AMBER stochastic gradient update equation is
given by:

w(k + 1) = w(k) + µid(k)d(k)r(k) (19)

Note that the expression in (5) equals (19) if we replace e(k)
by id(k)d(k). In practice, a modified error indicator func-
tion id(k) = 1

2 (1 − sgn(d(k)y(k) − τ)) is employed, where
the threshold τ is responsible for increasing the algorithm
rate of convergence. This algorithm updates when an error
is made and also when an error is almost made, becoming
a smarter choice for updating the filter coefficients.

B. The RTRL-AMBER algorithm

In this section, we use a strategy that combines the
strengths of neural networks, in dealing with deep spec-
tral nulls and creating optimal decision boundaries, and the
AMBER algorithm, that only updates the weights of the re-
ceiver when an error is made or almost made. Even though
the AMBER algorithm was devised for linear equalisers,
the principle of its update rule can be extended to neural
equalisers. We adopt a criterion similar to the AMBER
algorithm to be used in RNN structures, by modifying the
weight update rule of the RTRL technique, described in
(12). This strategy is based on the substitution of the er-
ror e(k) by id(k)d(k). The RTRL-AMBER algorithm is
described by the expression:

4w′
j(k) = µΛT

j (k)CT id(k)d(k) (19)

Note that the RTRL-AMBER algorithm employs the up-
dating principles of the AMBER algorithm. Although it
does not exactly minimise the BER nor was it devised
taking in consideration the non-linear nature of the RNN
structure, the simulations verify its superior convergence
and BER performances.

V. Simulations

In this section, we conduct simulation experiments to
assess the convergence and the BER performance of the
equalisers operating with the algorithms described and per-
form a comparative analysis of them. To evaluate the re-
ceivers, we have designed transversal equalisers and simu-
lated their operation under different radio-type communi-
cation channels.

A. Convergence Analysis

The simulation experiments, conducted to assess the con-
vergence of the different structures and algorithms, em-
ployed 1000 training data bits averaged over 100 inde-
pendent experiments. Furthermore, we use a small fixed
threshold τ = 0.1 for the AMBER algorithm in order to
increase its convergence rate. In the first situation, the

equalisers operate with the receiver observing 6 symbols
at each instant of time, with a step size µ = 0.005. We
consider a linear channel with transfer function H(z) =
1−0.25z−1+0.4z−2. The bit error rate (BER) is measured
at each received symbol for the different receivers. Fig. 4
shows the convergence performance of the algorithms to
adjust the filter parameters.

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

Number of training symbols

B
E

R

LMS
AMBER
RTRL
RTRL−AMBER

Fig. 4. Convergence performance for channel H(z) = 1− 0.25z−1 +

0.4z−2 with
Eb
N0

= 15dB.

In the second experiment, the equalisers operate with the
receiver observing 8 symbols at each instant of time using
a step size µ = 0.0075. We consider a linear channel with
transfer function H(z) = 1.1+1.2z−1−0.2z−2. As occurs in
the first experiment the BER is measured at each received
symbol for the different receivers, as shown in Fig. 5.

0 100 200 300 400 500 600 700 800 900 1000

10
−2

10
−1

10
0

Number of training symbols

B
E

R

LMS
AMBER
RTRL
RTRL−AMBER

Fig. 5. Convergence performance for channel H(z) = 1.1 + 1.2z−1−
0.2z−2 with

Eb
N0

= 18dB.

According to the curves plotted in Figs. 4 and 5, the

linear equaliser operating with the AMBER algorithm is
superior to the linear equaliser updated via the LMS. The
neural receiver using the RTRL algorithm has a better con-
vergence performance than the linear structures, whereas
the RTRL-AMBER neural receiver achieves the best con-
vergence performance.

B. BER Performance

The BER simulation results were obtained with 1000
training data bits and 104 data bits averaged over 100 in-
dependent experiments. All equalisers operate with a step
size µ during training and no adaptation occurs in data
mode. In addition, we use a small fixed threshold τ = 0.1
for the AMBER algorithm to increase its convergence rate.

In the first experiment, the equalisers operate with the
receiver observing 6 symbols at each instant of time, which
corresponds to 6 taps in the case of the linear equalisers,
with a step size µ = 0.005. We consider a linear channel
with transfer function H(z) = 1 − 0.25z−1 + 0.4z−2. Fig.
6 shows the BER performance of the receivers.

0 2 4 6 8 10 12 14 16 18
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

LMS
AMBER
RTRL
RTRL−AMBER

Fig. 6. BER performance for channel H(z) = 1− 0.25z−1 + 0.4z−2.

In the second experiment, the equalisers operate with the
receiver observing 8 symbols at each instant of time, which
corresponds to 8 taps in the case of the linear equalisers,
with a step size µ = 0.0075. We consider a linear channel
with transfer function H(z) = 1.1 + 1.2z−1 − 0.2z−2. Fig.
7 shows the BER performance of the receivers.

According to Figs. 6 and 7 the neural equaliser operating
with the RTRL algorithm is superior to the linear equaliser
updated via the AMBER and the LMS algorithms, at the
expense of a higher computational complexity. The neu-
ral receiver using the RTRL-AMBER algorithm achieves
the best BER and convergence performance, amongst the
examined systems. It can save up to 2 dB in comparison
with the RTRL approach, for the same BER performance.
The proposed RTRL-AMBER algorithm has shown conver-
gence and BER performances superior to the ones achieved
by the RTRL technique, whilst requiring a lower compu-

0 2 4 6 8 10 12 14 16 18

10
−2

10
−1

10
0

LMS
AMBER
RTRL
RTRL−AMBER

Fig. 7. BER performance for channel H(z) = 1.1+1.2z−1− 0.2z−2.

tational complexity, since due to the presence of the error
indicator function weight updating occurs less frequently.

VI. Conclusions

We have examined the use of an approximate minimum
bit error rate (MBER) approach to channel equalisation
using recurrent neural networks. We carried out a compar-
ative analysis of linear transversal equalisers, employing the
LMS and the AMBER algorithms, and neural equalisers,
employing the RTRL and the proposed RTRL-AMBER al-
gorithms. Computer simulation experiments have demon-
strated that a neural equaliser operating with the proposed
RTRL-AMBER algorithm is superior to the neural receiver
with the RTRL technique and to the linear receivers ad-
justed via the LMS and the AMBER algorithms. In com-
parison with the RTRL, the proposed RTRL-AMBER can
save up to 2 dB, for the same BER performance, requiring
a lower computational complexity than the RTRL method.

References

[1] S. Haykin, Adaptive Filter Theory, 3rd edition, Prentice-Hall,
Englewood Cliffs, NJ, 1996.

[2] S. Haykin, Neural Networks: A Comprehensive Foundation,
2nd Edition, Prentice-Hall, 1999.

[3] G. J. Gibson, S. Siu, and C. F. Cowan, “The application of
nonlinear structures to the reconstruction of binary signals”,
IEEE Transactions on Signal Processing, vol. 39, no. 8, pp.
1877-1884, August de 1991.

[4] I. Cha e S. A. Kassam, “Channel equalization using adaptive
complex radial basis function networks”, IEEE Journal on Se-
lected Areas in Communications, vol. 13, no. 1, oo. 122-131,
January de 1995.

[5] G. Kechriotis, E. Zervas e E. S. Manolakos, “Using Recurrent
Neural Networks for Adaptive Communication Channel Equal-
ization”, IEEE Transactions on Neural Networks, vol. 5, no. 2,
pp. 267-278, March 1994.

[6] M. J. Bradley and P. Mars, “Application of Recurrent Neu-
ral Networks to Communication Channel Equalization”, Proc.
IEEE Int. Conf. Acoust., Speech, Signal Processing, 1995.

[7] S. U. H. Qureshi, ”Adaptive equalization”, Proceedings of
IEEE, vol. 73, pp. 1349-1387, 1985.

[8] C. Yeh and J. R. Barry, “Approximate minimum bit-error rate

equalization for binary signaling”, Proc IEEE International
Conference on Communications, vol. 1, 1998, pp. 16-20.

