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Abstract—

In this paper we investigate the use of adaptive mini-
mum bit error rate (MBER) Gradient-Newton algorithms
for channel equalisation applications. The proposed algo-
rithms approximate the bit error rate (BER) from training
data using linear transversal and decision feedback (DFE)
equaliser structures. A comparative analysis of linear and
DFE equalisers, employing minimum mean squared error
(MMSE), previously reported MBER and the proposed
MBER algorithms is carried out. Computer simulation
experiments show that the MBER Gradient-Newton ap-
proaches outperform other analysed algorithms and can op-
erate with shorter training sequences.

I. Introduction

Channel equalisers employing the minimum mean square
error (MMSE) [1],[2] criterion have become rather success-
ful, since they usually show good performance and have
simple adaptive implementation [2],[3]. However, it is well
known that the MSE cost function is not optimal in digi-
tal communications applications, and the most appropriate
cost function is the bit error rate (BER) [4],[5]. The ap-
proximate minimum bit error rate (AMBER) [4] and the
least bit error rate (LBER) [5] are two of the most success-
ful and suitable algorithms for adaptive implementation.
However, these minimum bit error rate (MBER) algorithms
usually require long training sequences to converge to lower
bit error rates than those achieved by the techniques that
employ the MSE cost function. In this work, we inves-
tigate MBER Gradient-Newton algorithms that can speed
up the convergence of the equaliser, requiring shorter train-
ing data. The proposed algorithms, denoted Gradient-
Newton-AMBER and Gradient-Newton-LBER, are similar
to the well known LMS-Newton algorithm and employ the
error functions used in the AMBER and the LBER, respec-
tively. We perform a comparative analysis of linear and
decision feedback (DFE) equalisers, employing the LMS
[3], the AMBER [4], the LBER [5] the LMS-Newton [3],
the Gradient-Newton-AMBER and the Gradient-Newton-
LBER adaptive algorithms. Computer simulation experi-
ments show that the MBER Gradient-Newton approaches
outperform other analysed algorithms and can operate with
shorter training sequences, even though they require higher
computational complexity.

This paper is organised as follows. Section II briefly de-
scribes the communication system model. The adaptive
equalisers structures and stochastic gradient algorithms
are presented in Sections III and IV. Section V is dedi-
cated to the Gradient-Newton based algorithms. Section
VI presents and discusses the simulation results and Sec-
tion VII gives the concluding remarks of this work.

II. System Model

We assume a BPSK communication system that trans-
mits modulated symbols through a radio-type communi-
cation channel, which is followed by an adaptive equaliser
and a symbol detector, as shown in Fig. 1. Consider a dis-
crete time communication channel, where x(k) is the binary
transmitted symbol, h(k) is the channel impulse response
with memory M and n(k) is additive white gaussian noise
(AWGN) with power spectrum density σ2. The output
signal r(k) of the channel is expressed by:

r(k) = s(k) + n(k) =
M∑

i=0

h(i)x(k − i) + n(k) (1)

where s(k) is the channel output without noise.

Fig. 1. Communication channel and receiver.

The channel output vector r(k) =
[
r(k) . . . r(k−N)

]T is
given by:

r(k) = s(k) + n(k) = Hx(k) + n(k) (2)

where x(k) =
[
x(k) . . . x(k −M −N)

]T is the vector with

the channel inputs, n(k) =
[
n(k) . . . n(k−N)

]T is the noise

sample vector, s(k) =
[
s(k) . . . s(k − N)

]T is the vector
without noise and H is a (N + 1)× (M + N + 1) Toeplitz
convolution matrix expressed by:

H =
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III. Equalisers structures

The adaptive channel equalisation problem involves the
application of a receiving filter, that adjusts its coefficients
in order to minimise a given objective function [1],[2]. The
equaliser must be adaptive in order to track the signal vari-
ations imposed by the channel, however, it requires a de-
sired signal taken from a training sequence to adjust its
parameters, as shown in Fig. 2.



Fig. 2. Block diagram of an adaptive equaliser.

The linear transversal equaliser consists of a linear filter
with N +1 taps described by the vector w =

[
w0 ... wN

]T .
The linear equaliser output is given by:

y(k) = wT r(k) (4)

where r(k) =
[
r(k) . . . r(k − N)

]
is the observed output

signal vector of the channel. The decision x̂(k−D) on the
transmitted symbol x(k−D) is determined by the equaliser
output signal, x̂(k−D) = sgn(y(k)) , where D corresponds
to the delay imposed by the channel and the equaliser.

The decision feedback (DFE) equaliser employs the re-
ceived samples and past decisions to estimate the received
symbols. The output of the DFE equaliser is described by:

y(k) = wf
T r(k)− bT x̂(k) (5)

where r(k) = [r(k) . . . r(k −N1)] is the observed output
signal vector of the channel, the past detected sym-
bol vector is x̂(k) = [x̂(k −D − 1) . . . x̂(k −D −N2)]T ,
wf = [w0 ... wN1 ]

T is the feedforward coefficient vector and
b = [b1 ... bN2 ]

T is the feedback coefficient vector. Alterna-
tively the DFE can be expressed by:

y(k) = wT u(k) (6)

where u(k) =
[
r(k) . . . r(k − N1 − 1)x̂(k − D − 1) . . . x̂(k − D −

N2)
]

is the observation vector for the DFE structure, w =[
wT

f −bT
]T =

[
w0 ... wN1+N2+1

]T is the coefficient vector
with N1 + 1 and N2 taps in the feedforward and feedback
sections, respectively.

IV. Stochastic gradient algorithms

In this section, we describe stochastic gradient algo-
rithms that adjust the parameters of the receivers based
on the minimisation of the mean square error (MSE) and
the bit error rate (BER) cost functions.

A. The LMS algorithm

The adaptive equalisation solution for the linear
equaliser via the LMS algorithm [1] is based on the MMSE
error criterion formed by the error signal e(k) = d(k)−y(k),
and is described by:

w(k + 1) = w(k) + µe(k)r(k) (7)

In the case of the decision feedback (DFE) equaliser, the
solution is given by:

w(k + 1) = w(k) + µe(k)u(k) (8)

where d(k) = x(k−D) is the desired signal taken from the
training sequence, r(k) is the observation vector for the
linear equaliser, u(k) is the observation vector for the DFE
structure and µ is the algorithm step size.

B. The AMBER algorithm

Given a transmitted training sequence d, the bit error
probability P (ε|d), for the linear and the DFE receivers, is
expressed by:

P
(
ε|d)

= P
(
d(k)sgn(y(k)) = −1

)

P
(
ε|d)

= P
(
sgn(d(k)y(k)) = −1

)
= P

(
ys(k) < 0

)
(9)

where y(k) is given by (4), for the linear equaliser, and
expressed by (6), in the case of the DFE equaliser and d(k)
is the desired symbol taken from the training sequence.

The equaliser solution that minimises the BER criterion
via the AMBER algorithm [4] for linear structures employs
the vector function g(w(k)) [3] to approximate an expres-
sion for a coefficient vector w(k) that achieves a MBER
performance with linear receiver structures, as described
by:

g(w(k)) = E

[
Q

(
d(k)wT (k)s(k)
‖ w(k) ‖ σ

)
d(k)s(k)

]
(10)

where d(k) is the desired transmitted symbol taken from
the training sequence and Q(.) is the Gaussian error func-
tion. A simple stochastic solution for w can be derived by
using g(w(k)) and adjusting the receiver weights by:

w(k + 1) = w(k) + µg(w(k)) (11)

Note that for linear receiver structures the quantity
Q

(
d(k)wT (k)s(k)
‖w(k)‖σ

)
inside the expected value operator in (10)

corresponds to the conditional bit error probability given
the product d(k)s(k). This quantity can be replaced in (10)
by an error indicator function id(k) given by:

id(k) =
1
2
(1− sgn(d(k)y(k))) (12)

where y(k) is the estimated symbol and d(k) is the desired
signal provided by the training sequence.

Following this approach, the AMBER algorithm, as de-
vised for linear equalisers [4], is described by the following
equalities:

w(k + 1) = w(k) + µE

[
Q

(
d(k)wT (k)s(k)
‖ w(k) ‖ σ

)
d(k)s(k)

]

w(k + 1) = w(k) + µE
[
E

[
id(k) | d(k)s(k)

]
d(k)s(k)

]

w(k + 1) = w(k) + µE
[
id(k)d(k)s(k)

]



Since s(k) = r(k) − n(k), and id(k) and d(k) are
statistically independent, we have E[id(k)d(k)n(k)] =
E[d(k)]E[id(k)n(k)] = 0 and thus:

w(k + 1) = w(k) + µE
[
id(k)d(k)r(k)

]
(13)

The AMBER stochastic gradient update equation for the
linear equaliser is given by:

w(k + 1) = w(k) + µid(k)d(k)r(k) (14)

And the AMBER approach applied to the DFE equaliser
is expressed by:

w(k + 1) = w(k) + µid(k)d(k)u(k) (15)

Note that the expressions in (7) and (8) equal (14) and
(15), respectively, if we replace e(k) by id(k)d(k). In prac-
tice, a modified error indicator function id(k) = 1

2 (1 −
sgn(d(k)y(k)−τ)) is employed, where the threshold τ is re-
sponsible for increasing the algorithm rate of convergence.
This algorithm updates when an error is made and also
when an error is almost made, becoming a smarter choice
for updating the filter coefficients.

C. The LBER algorithm

The equaliser BER depends on the distribution of the
decision variable y(k), which is a function of the weights of
the equaliser. The sign-adjusted decision variable for the
DFE equaliser ys(k) = sgn(x(k−D))y(k) is drawn from a
Gaussian mixture, described by:

ys(k) = sgn(x(k −D))
(
wT Hx(k)− bT x̂(k) + wT n(k)

)

ys(k) = sgn(x(k −D))y′(k) + n′(k) (16)

where the first term of (16) is the noise free sign-adjusted
equaliser output.

Consider that K samples of the transmitted symbols
x(k) and K samples of the received symbols r(k) are avail-
able from the samples d(k) = x(k − D) of a training se-
quence. A kernel density estimate [5] of the p.d.f. of ys is
given by:

pys(ys) =
1

K
√

2πρ(wT
f wf )1/2

K∑

k=1

exp

(−(ys − sgn(d(k))y(k))2

2ρ2wT
f wf

)
(17)

where ρ is the radius parameter of the kernel density esti-
mate [5].

Substituting the expected value of the gradient with a
single point estimate, we have:

p̂ys(ys(k)) =
1

K
√

2πρ(wT
f wf )1/2

exp

(−(ys − sgn(d(k))y(k))2

2ρ2wT
f wf

)
(18)

The probability of error is estimated by:

Pε = P (ys < 0) =
∫ 0

−∞
p̂ys

(ys)dys = Q

(
sgn(d(k))y(k)
ρ(wT

f wf )1/2

)

(19)
The gradient terms of Pε are:

∂Pε

∂wf
=

exp
(

−y(k)2

2ρ2wT
f
wf

)
sgn(d(k))

√
2πρ

( −r(k)
(wT

f wf )1/2
+

wfy(k)
(wT

f wf )3/2

)

(20)
and

∂Pε

∂b
=

1√
2πρ(wT

f wf )1/2
exp

( −y(k)2

2ρ2wT
f wf

)
sgn(d(k))x̂(k)

(21)
An algorithm similar to the LMS was devised in [5]

by substituting the exact pdf by its instantaneous es-
timate and adjusting the receiver weights such that
wf

T (k)wf (k) = 1:

wf (k + 1) = wf (k)− µ

[
∂Pε

∂w

]

k

(22)

b(k + 1) = b(k)− µ

[
∂Pε

∂b

]

k

(23)

The LBER algorithm for the linear equaliser (wf =
w and b = 0) is given by:

w(k + 1) = w(k) + µ
1√
2πρ

exp

(−(y(k))2

2ρ2

)
sgn(d(k))

× (
I−w(k)wT (k)

)
r(k) (24)

The LBER algorithm for the DFE equaliser is expressed
by:

wf (k + 1) = wf (k) + µ
1√
2πρ

exp

(−(y(k))2

2ρ2

)
sgn(d(k))

× (r(k)−w(k)y(k)) (25)

b(k + 1) = b(k)− µ
1√
2πρ

exp

(−(y(k))2

2ρ2

)
sgn(d(k))x̂(k)

(26)
Rearranging the expressions for the DFE receiver, we can
rewrite them in a single vector w(k) format as:

w(k + 1) = w(k) + µ
1√
2πρ

exp

(−(y(k))2

2ρ2

)
sgn(d(k))

× (
I− [wf

T (k) 0T ]T wT (k)
)
u(k) (27)

where wf (k) = [w0 . . . wN1 ] is the feedforward coefficient
vector, d(k) = x(k − D) is the desired signal taken from
the training sequence, µ is the algorithm step size and ρ
the radius parameter which is related to the noise standard
deviation σ. Whilst in the AMBER, a non-zero τ defines
a region boundary where the algorithm will continue to
update, in the LBER, the effect of the distance from the
decision boundary is controlled by an exponential term [5].



V. Gradient-Newton Based Algorithms

Gradient-Newton algorithms [3] incorporate second-
order statistics of input signals, increasing their conver-
gence rate. They usually have a faster convergence rate
than gradient techniques, although they require a higher
computational complexity. The update equation of New-
ton´s method is given by

w(k + 1) = w(k)− 1
2
Ru

−1gw(k) (28)

where Ru is the autocorrelation matrix of the observation
vector u and gw(k) is the gradient vector.

In practice, only estimates of the autocorrelation matrix
Ru and the gradient vector gw(k) are available. These
estimates can be applied to Newton´s formula to devise an
update rule give by:

w(k + 1) = w(k)− µR̂u
−1

(k)ĝw(k) (29)

The convergence factor µ is introduced to protect the al-
gorithm from divergence, which is originated by the use of
noisy estimates of Ru and gw(k).

To obtain an unbiased estimate of the observation matrix
Ru, we employ the following weighted sum:

R̂u(k) = αu(k)uT (k) + (1− α)R̂u(k − 1) (30)

where α is a small factor chosen in the range 0 < α ≤ 0.1
and u(k) is the observation vector.

To avoid the required inversion of R̂u(n), we use the
matrix inversion lemma, described by:

[A + BCD]−1 = A−1 −A−1B[DA−1B + C−1]−1DA−1

(31)
where A, B, C and D are matrices with appropriate
dimensions and A and C are non-singular. Choosing
A = (1 − α)R̂u(k − 1), B = DT = r(k) and C = α, it
can be shown that:

R̂u
−1

(k) =
1

1− α

[
R̂u

−1
(k − 1)

−R̂u
−1

(k − 1)u(k)uT (k)R̂u
−1

(k − 1)
1−α

α + uT (k)R̂u
−1

u(k)

]
(32)

The resulting equation for the computation of R̂u
−1

(k) is
less complex to update (O(N2)) than its direct inversion
(O(N3)).

A. LMS-Newton algorithm

The LMS-Newton [3] algorithm employs the error signal
e(k) = d(k)− y(k), which corresponds to the MMSE solu-
tion. Thus, the estimate of the gradient ĝw(k) is replaced
by e(k)r(k) to yield the expression of the LMS-Newton al-
gorithm for the linear equaliser as given by:

w(k + 1) = w(k) + µR̂r
−1

(k)e(k)r(k) (33)

In the case of the decision feedback (DFE) equaliser, the
solution is expressed by:

w(k + 1) = w(k) + µR̂u
−1

(k)e(k)u(k) (34)

where d(k) = x(k−D) is the desired signal taken from the
training sequence, r(k) is the observation vector for the
linear equaliser, u(k) is the observation vector for the DFE
structure and µ is the algorithm step size. Note that the
LMS-Newton algorithms differs from the LMS algorithm
by the use of the observation matrix R̂u

−1
(k) to increase

its rate of convergence.

B. Gradient-Newton-AMBER algorithm

An approach similar to LMS-Newton can be used to de-
vise a Gradient-Newton based algorithm that minimises a
given objective function g(w(k)), as expressed by:

w(n + 1) = w(n) + µR̂u
−1

ĝ(w(k)) (35)

We chose the objective function g(w(k)) used in the AM-
BER algorithm [4] as an approximation to an MBER func-
tion. Then, we use the observation matrix R̂u

−1
(k) to

speed up the convergence rate of the algorithm and obtain
the Gradient-Newton AMBER update equation for the lin-
ear equaliser:

w(k + 1) = w(k) + µR̂r
−1

(k)id(k)d(k)r(k) (36)

The decision feedback (DFE) equaliser solution is expressed
by:

w(k + 1) = w(k) + µR̂u
−1

(k)id(k)d(k)u(k) (37)

where d(k) = x(k−D) is the desired signal taken from the
training sequence, r(k) is the observation vector for the
linear equaliser, u(k) is the observation vector for the DFE
structure and µ is the algorithm step size. Note that the
Gradient-Newton algorithm only differs from the AMBER
by the addition of the inverse correlation matrix R̂u

−1
(k)

in (14) and (15).

C. Gradient-Newton-LBER algorithm

An algorithm similar to the LMS-Newton can be devised
employing an approach analogous to the LBER algorithm.
Using Newton´s update rule we have:

w(k + 1) = w(k)− µR−1(k)
[
∂Pε

∂w

]

k

(38)

b(k + 1) = b(k)− µR−1(k)
[
∂Pε

∂b

]

k

(39)

The Gradient-Newton-LBER algorithm for the linear re-
ceiver is given by:

w(k + 1) = w(k) + µ
1

K
√

2πρ
exp

(−(y(k))2

2ρ2

)
sgn(d(k))



×R̂r
−1

(k)
(
I−w(k)wT (k)

)
r(k) (40)

The decision feedback (DFE) equaliser solution in a single
vector w(k) format is expressed by:

w(k+1) = w(k)+µ
1√
2πρ

exp

(−(y(k))2

2ρ2

)
sgn(d(k))R̂u

−1
(k)

× (
I− [wf

T (k) 0T ]T wT (k)
)
u(k) (41)

where wf (k) = [w0 . . . wN1 ] is the feedforward coefficient
vector, d(k) = x(k − D) is the desired signal taken from
the training sequence, r(k) is the observation vector for the
linear equaliser, u(k) is the observation vector for the DFE
structure and µ is the algorithm step size. Note that the
Gradient-Newton algorithm only differs from the LBER
for the DFE structure by the use of the inverse correla-
tion matrix R̂u

−1
(k) in (27), which increases its rate of

convergence.

VI. Simulations

In this section, we conduct simulation experiments to
assess the convergence and the BER performance of the
linear and DFE equalisers operating with the algorithms
described and perform a comparative analysis of them. To
evaluate the receivers, we have simulated their operation
under different radio-type communication channels.

A. Convergence Analysis

The simulation experiments, conducted to assess the con-
vergence of the different structures and algorithms, em-
ployed 1000 training data bits averaged over 100 inde-
pendent experiments. Furthermore, we use a small fixed
threshold τ = 0.1 for the AMBER based algorithms and
ρ = 8σ2 for the LBER based methods. In the first situa-
tion, the linear equalisers have 8 taps, the stochastic gradi-
ent algorithms operate with µ = 0.0075 and the gradient-
newton techniques operate with α = 0.001 and µ = 0.0001
. We consider a linear channel with transfer function
H(z) = 1 − 0.25z−1 + 0.4z−2. The bit error rate (BER)
was measured at each received symbol for the different re-
ceivers, as shown in Fig. 3.

According to the curves in Fig. 3, the linear transversal
equaliser operating with the Gradient-Newton-LBER algo-
rithm achieved the best convergence performance, outper-
forming the Gradient-Newton-AMBER, the LMS-Newton,
the AMBER, the LBER and the LMS techniques. Indeed,
the gradient-newton algorithms have shown faster conver-
gence than their gradient counterparts.

In the second experiment, we have designed DFE equalis-
ers with 6 taps in the feedforward section and 2 taps in
the feedback one. The stochastic gradient algorithms were
tuned to operate with µ = 0.01 and the gradient-newton
techniques operate with α = 0.001 and µ = 0.0001. We
consider a linear channel with transfer function H(z) =
1.1 + 1.2z−1 − 0.2z−2. As occurs in the first experiment
the BER is measured at each received symbol for the dif-
ferent receivers, as depicted in Fig. 4.
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Fig. 3. Convergence performance for the linear equalisers for channel

H(z) = 1− 0.25z−1 + 0.4z−2 with
Eb
N0

= 16dB.
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Fig. 4. Convergence performance for the DFE equalisers for channel

H(z) = 1.1 + 1.2z−1 − 0.2z−2 with
Eb
N0

= 15dB.

For DFE equalisers, the Gradient-Newton-LBER al-
gorithm also achieved the best convergence perfor-
mance, slightly outperforming the Gradient-Newton-
AMBER technique, followed by the LMS-Newton, the
LBER, the AMBER and the LMS algorithms.

B. BER Performance

The BER simulation results were obtained with 400
training symbols and 104 data bits averaged over 100 in-
dependent experiments. All equalisers operate with a step
size µ during training and no adaptation occurs in data
mode. We use a small fixed threshold τ = 0.1 for the AM-
BER type algorithms and ρ = 8σ2 for the LBER based
methods.

In the first experiment, the equalisers have 8 taps and



operate with µ = 0.0075 and α = 0.001 We consider a
linear channel with transfer function H(z) = 1−0.25z−1 +
0.4z−2. Fig. 5 shows the BER performance of the receivers.
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Fig. 5. BER performance using linear equalisers with channel H(z) =
1− 0.25z−1 + 0.4z−2.

According to Fig. 5 the linear equaliser operating with
the Gradient-Newton-LBER algorithm has the best BER
performance amongst the examined systems, followed by
the Gradient-Newton-AMBER, the LMS-Newton, the AM-
BER, the LBER and the LMS algorithms.

In the second experiment, we have used DFE equalisers
with 6 taps in the feedforward section and 2 taps in the
feedback one. The stochastic gradient algorithms operate
with µ = 0.01 and the gradient-newton techniques operate
with α = 0.001 and µ = 0.0001. We consider a linear chan-
nel with transfer function H(z) = 1.1 + 1.2z−1 − 0.2z−2.
Fig. 6 shows the BER performance of the receivers.
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Fig. 6. BER performance using DFE equalisers for channel H(z) =
1.1 + 1.2z−1 − 0.2z−2.

In the case of decision feedback equalisers, the Gradient-
Newton-AMBER algorithm has achieved the best BER
performance amongst the examined systems, followed by
the Gradient-Newton-LBER, the LMS-Newton, the LBER,
the AMBER and the LMS algorithms, as depicted in Fig.
6.

Note that the Gradient-Newton-LBER method performs
well at high Eb

N0
, whilst the Gradient-Newton-AMBER

shows good performance for both high and low Eb

N0
. In ad-

dition, the proposed Gradient-Newton type algorithms are
superior to the well known LMS-Newton technique, whilst
requiring a lower computational complexity and shorter
training sequences.

VII. Concluding Remarks

We investigated the use of adaptive minimum bit er-
ror rate (MBER) Gradient-Newton algorithms for chan-
nel equalisation applications. The proposed algorithms
approximate the bit error rate (BER) from training data
using linear transversal and decision feedback (DFE)
equaliser structures. A comparative analysis of linear and
DFE equalisers, employing minimum mean squared er-
ror (MMSE), MBER and the proposed MBER algorithms
was carried out. Computer simulation experiments have
shown that the Gradient-Newton-AMBER and Gradient-
Newton-LBER approaches outperform other analysed al-
gorithms and can operate with shorter training sequences,
even though they require a higher computational complex-
ity.
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