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Abstract - This work addresses the application of blind adaptive
antenna arrays for GPS in order to achieve interference
cancellation, by means of the minimization of the Signal-to-
Interference Ratio (SIR), which enables more accurate estimation
for the user position.
Two structures for adaptive antenna array are investigated,
using the blind generalized constant modulus algorithm
(GCMA). The first one is a pipeline structure and the second one
is a hybrid solution, involving a multilayer perceptron neural
network.
The proposed hybrid technique is presented in two different
configurations and compared with the original pipeline structure.
Simulations consider a critic realistic GPS situation, pointing out
the effectiveness of the hybrid approach in terms of radiation
patterns and dynamic convergence.

I. INTRODUCTION

he so-called Global Positioning System (GPS) has
become largely used in many civil applications.

Modern receivers can take advantage of spatial signal
processing to improve the robustness of the GPS signal
and suppress interference. In fact, GPS signals are
subject to several impairments, such as multipath
fading, tropospheric and ionospheric delays, power
fluctuations due to scintillation, Doppler effects, clock
and receiver errors and so on [1, 2].
   An interesting approach is the use of adaptive
antenna array to detect and locate the direction of a
GPS source, in order to mitigate interfering signals.
Similar techniques have been studied in other
communication problems, as cellular systems for
instance [3, 5].
   Corresponding algorithms are derived from classic
adaptive filtering approach and generalized to a space-
time framework. Such algorithms can be supervised or
blind, in the sense that they do not make use of a
reference signal in the adaptation process.
In this work, we will deal with blind techniques that do
not require either direction of arrival (DOA) estimation,
or an a priori knowledge of the number of interference
signals. First a pipeline structure for adaptive antenna
array is proposed, using the generalized constant
modulus algorithm (GCMA)[6, 8].   Then a new hybrid
solution, based on such pipeline structure associated
with a multilayer perceptron neural network (MLPNN)
[7], is introduced. The use of MLPNN improves the
robustness of the method in critical cases, for instance
when desired and interference signals are closely
spaced. Simulations have been carried out by
considering different realistic GPS situations.
   The article is organized as follows. Section 2
describes the blind algorithm to be used in the adaptive
spatial equalizers and the corresponding GCMA-
pipeline structure. In section 3, the new hybrid signal
processing algorithms GCMA/MLPNN are proposed.

Afterwards simulation results are presented and
discussed in section 4. Finally, some conclusion
remarks are posed in section 5.

II. THE GCMA-PIPELINE STRUCTURE FOR
BLIND SPATIAL EQUALIZATION

   Blind equalization involves no training sequence, to
be used as a reference or desired signal. The main goal
is to recover the input signal based on the statistical
characteristics of the received one. Blind equalization is
an efficient solution in terms of bandwidth. However,
their cost functions may be subject to the existence of
local minima.
   The first class of blind algorithms largely presented
in the literature is known as "Bussgang algorithms" [4],
e.g. the Godard or constant modulus algorithm (CMA),
which is a reference in the blind equalization field. The
main principle is to optimize a cost function based on
the principle of restoring the constant modulus property
of the transmitted data constellation. This algorithm
converges in presence of frequency shift and phase
errors between transmitter and receiver, because the
cost function is independent from the signal phase.
   Here we will apply an alternative approach named
generalized constant modulus algorithm (GCMA),
where the constant value of the constellation radius is
not a priori established. So, the utilization of an
automatic control gain becomes necessary to provide
power equalization too [6, 8].
   The antenna weights updating is obtained by the
following equations:
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   Where µ is the adaptation step, λ  is a smoothing
factor, w is the equalizer weight vector, u(k) is the
equalizer input vector, y(n) is the equalizer output, z
and r are statistical mean. The initial conditions are
given by 1)0( =z , T]0...0[)0( =r  and 1<λ .

   In the concept of adaptive spatial equalization, the
equalizer processes spatial samples of an incident
wave. For the antenna array system, the direction of
arrival of the incoming signal plays the same role of
frequency in temporal filters. The radiation pattern,
which plays for spatial domain the same role as the
frequency spectrum for the temporal filter, shows the
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array gain as a function of the direction of arrival of the
captured signals.
   Adaptive algorithms modify the antenna radiation
pattern in according to some pre-established criterion,
which optimizes the reception of the desired signals.
The antenna is an active device, which controls the
radiation pattern performance based on an intelligent
processing. The elements of the array may be disposed
in a linear, planar or circular configuration, according
to the application
   In the following, we will analyze the performance of
adaptive linear antenna array, in order to mitigate the
interfering signals by the insertion of nulls in the
radiating pattern in the interference directions.
   The linear antenna array is uniformly spaced, with M
identical isotropic elements, as illustrated in figure 1.
Each element is weighted with a complex coefficient.
   The mathematical model can be described by:
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is a function associated with the linear geometry.
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Fig. 1.  Linear array.

   In this way, in order to eliminate the interference
using this algorithm, a pipeline structure for successive
interference suppression is proposed in figure 2 [8]. In
this structure each GCMAi, 4,...,1=i , contains a

weight set, associated with the array elements and
adapted by the GCMA algorithm.

Fig. 2. Pipeline structure.

   The signals arriving on the array antenna are

processed by the GCMA1 stage that recovers the signal
with the higher power. A preprocessing is used for the
other stages, in such a way that the signal estimated

from the satellites 1,...,1,
^

−= ijX j  and obtained in the

GCMAj, 1,...,1 −= ij , stages are subtracted from the

next GCMAi. stage. Therefore, the desired signals are
recovered in a decreasing power order.
   In figure 1 the GCMA 1 stage captures the signal
from one of the visible satellites (D1), while the signals
coming from other satellites or from interference
sources are considered as interference and represented
by intk, k = 1,...,5. But the i-th GCMA stages, i=2,...,4,
subjected to the preprocessing, allow the capture of
signals coming from other visible satellites (D2, D3,
D4 , respectively).
   It is important to note that the pipeline structure using
a blind algorithm does not need a previous knowledge
of the DOA. However, it must be supposed that the
desired signal power is higher than the interference
power. Under this assumption the solution has shown
to be effective in many cases, even for rather severe
channel conditions.
    Nevertheless the performance may decrease when
interference signal are close to the desired one. In fact,
the capability of the scheme in separating desired and
interference signals depends on the number of
antennas. To avoid the use of a high number of array
elements, which can present a prohibitive cost, we
propose to use a more robust technique together with
the pipeline structure.

III. MLP NEURAL NETWORK

   Artificial neural networks are computational systems
that try to mimic some capabilities from the biological
nervous system, using several interconnected elements
called artificial neurons.
   The multilayer perceptron network (MLPNN) is
composed of several hidden perceptron neurons [7]. In
this work we considered MLPNN with only one
intermediate layer, where the neurons of the hidden
layer receive the input of the network.

Vector of M  inputs: T
Mxxx ],....,,1[ 110 −=x

Vector of N outputs: T
Nyyy ],....,[ 110 −=y

   The weight matrix between the input and the
intermediate layers, for H neurons, are given by

xHMA )1( + .

   The weight matrix between intermediate and the

output layers, for H neurons, are given by xNHB )1( +

   By considering a hyperbolic tangent as the activation
function, the network outputs are given by [7]:
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   Where τ is a constant that control the sigmoid
derivative.
   The network parameters are updated by the
minimization of a suitable cost function [7]. The hybrid
solution to be proposed in the sequel consists of the



joint employ of artificial neural networks together with
the pipeline-GCMA approach presented in section II.

IV. THE HYBRID SOLUTION

   The GCMA pipeline/neural was implemented in two
variants, so-called “arm” or “parallel” structures, as
shown in figures 3 and 4 respectively. The first one
means that a MLPNN is introduced in each “arm” of
the pipeline structure, to separately enhance the
recovering of each desired signal. The MLPNN is
active after the blind algorithms attained the
convergence. After the first signal was captured, this
information is sent to the next “arm” that captures the
second most powerful input signal and so on, as
previously stated.
   The second one called “parallel”, works first as the
approach of section II. After the convergence, the
recovered data feeds the input of the MLPNN, which
proceeds with a joint enhancement of all those outputs.
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Fig. 3.  GCMA-pipeline/neural: “arm”
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V. SIMULATIONS RESULTS

   In order to assess the performances of the new
solution for GPS antenna array, a linear array with 10
isotropic antennas was evaluated for two scenarios. The
first one involves 3 interfering signals and 4
information satellite signals. In the scenario 2 we have
the same number of satellite signals but 5 interfering
signals. Results of computational burden, BPSK output
constellation, symbol error rate and array radiation
pattern are observed for the hybrid solution and
compared to the original pipeline-GCMA.
   Simulations consider SIR = 3 dB, SNR = –14.8 dB,
which may be considered extremely weak for any
practical situation. GPS satellite signals come from the

elevations angles 0°, 60°, 330°e 300°. The interference
elevations angles are 315°, 85°e 275°, according with
the reference of figure 1. For the hybrid structure, the
array "in arm” used 5 neurons by arm, and the array "in
parallel" considered 20 neurons.
   Due to space limitations only some representative
outputs are presented. So an output signal with a typical
behavior together with the case of the worst
performance are shown.
   The performance of the blind GCMA in the pipeline
structure, for 3 and 4 interfering signals, is illustrated
by figures 5 to 8. In figures 5 and 6 the good capture of
the desired signal (des3) can be observed, as well as the
interference cancellation. In fact, the gap between
(des3) and all other interference and desired signals,
except (des2), which the corresponding gains falls
below 25 dB. For (des2) the difference is about 7 dB,
which is poorly satisfactory. The temporal evolution
shows the good convergence properties of GCMA and
confirms the attainment of the opened-eye condition,
even if a phase rotation effect may be noted.
   Such difficulties are pointed out by observing figures
7 and 8, corresponding to the worst case output. The
small degree of freedom, which depends on the number
of antennas, does not make possible the complete
cancellation. The radiation pattern shows that a number
of undesired signals preserves a gain level about 10 to
20 dB below the desired (des2), which does not
guarantee a satisfactory recovering.
   The results of the hybrid GCMA-Neural “arm” can
be seen in the figures 9 to 14, when 3 and 5 interfering
signals were considered. The array factor pattern shows
the very good canceling of the interfering signals, for
levels greater than 20dB below the captured signals. In
the temporal evolution, convergence is observed in less
than 300 iterations. For the most critical output, it is
clear that initial convergence is slower. Anyway, after
convergence the opened-eye condition is more largely
attained, if compared with the previous approach (figs.
6 and 8), for both output signals.
   The second approach with neural network is the so-
called “parallel” and the results are presented in the
figures 15 to 20. The simulations show the good
performance of the structure in the situations with 3
and 5 interfering signals.
   From the array factor pattern in figures 15 and 16, a
good level of canceling (greater than 18 dB) is
observed for the interfering signals. The temporal
evolution (fig. 17) shows the easy convergence process,
with less than 200 iterations. From figures 18 and 19, it
is possible to observe the interference canceling in the
same level that in the case of 3 interfering signals. An
important issue is that applying MLPNN solves the
phase rotation problem.
   The number of neurons is similar for the two
approaches, i.e., 5 by “arm” and 4 arms, totalizing 20
neurons and 20 neurons in the parallel structure. This
leads to a similar computational complexity for both
structures.
   The computational burden in the hybrid solutions
includes the blind algorithms processing, which is
proportional to the number of antennas. In addition, the
MLPNN has a complexity of 4H(M+5)+3(H+1)N sums



and 2H(M+4)+2(H+1)N multiplications. In this context
we believe that the use of the hybrid approach is
feasible and worthwhile, due to the performance
improvements.

VI. COMMENTS AND CONCLUSION

   A first motivation of this work is to show how spatial
processing techniques could open new and interesting
perspectives in GPS applications. The mitigation of
multipath and interference signals is essential for an
accurate positioning. In this sense, the use of the
proposed hybrid approaches in the analyzed scenarios
provided rather satisfactory results.
   Other more realistic scenarios, with more visible
satellites, are being established for further tests. Planar
array configurations are also under study in order to
reduce the number of antennas, the size of the array and
to solve ambiguities.
   Finally, the computational burden of the hybrid
algorithms was shown to be not prohibitive, if we take
into account the performance in interference canceling,
the algorithms convergence and overall the good results
of the factor array pattern.
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Fig. 5. Array factor pattern – output 3

Fig. 6. Temporal evolution – output 3

Fig. 7. Array factor pattern – output 2



Fig. 8. Temporal evolution – output 2

Fig. 9. Array factor pattern – output 1

Fig. 10: Array factor pattern – output 2

Fig. 11. Temporal evolution – output 2

Fig. 12. Array factor pattern – output 1

Fig. 13. Array factor pattern – output 2

Fig. 14. Temporal evolution – output 2

Fig. 15. Array factor pattern – output 1



Fig.16. Array factor pattern – output 3

Fig. 17. Temporal evolution – output 1

Fig. 18. Array factor pattern – output 1

Fig.19. Array factor pattern – output 3

Fig. 20. Temporal evolution – output 3


