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Abstract— A blind criterion for adaptive equalization based on proba-
bility density function (pdf) estimation is proposed. The criterion measures
the divergence between the pdf of an ideally equalized signal and the one
from a parametric model resulting in a cost function that is a sort of entropy
minimization of the equalizer output signal. It is also shown a link between
the constant modulus (CM) criterion and the proposed one under certain
circumstances. Some convergence properties are studied and the perfor-
mance of the proposal is evaluated through simulations faced to a classical
blind criterion.

I. I NTRODUCTION

IN THE DESIGN of receivers in digital communication sys-
tems blind receivers are being more and more used. Since the

work of Sato [1] and lately the one of Godard [2] the study on
blind criteria has increased a lot.

The most part of proposed blind criteria take in account the
Bussgang methods, it means, a memoryless nonlinear function
is applied to the equalizer output to produce a signal with the
same statistical properties of the transmitted ones in order to
compare it with the equalizer output [3].

Some recent works have proposed information-theoretic
based approaches for blind equalization criteria [4], [5]. In those
papers, the nonparametric estimation of the probability density
function (pdf) of the signal on the equalizer output is required
for the cost function construction, besides, a nonlinear structure
for the equalizer, such as neural networks, is used [4]. Another
characteristic of information-theoretical approaches is their use
in blind source separation, which has a strong link with blind
equalization (deconvolution) [6]

The present proposal is information-theoretical based with
parametric pdf estimation. The pdf of the ideally (perfectly)
equalized signal isa priori determined based on feasible as-
sumptions, making possible to use a parametric model that fits
the system order. Hence, the resulting criterion is based on the
entropy minimization of the equalizer output signal.

An stochastic gradient type algorithm is derived for the up-
dating of the filter equalizer. A brief analyze of the stochastic
version of the constant modulus (CM) criterion is done in order
to show a link between that criterion and the proposal.
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The used notation is given as follows. The discrete transmit-

ted sequencea(n) =
[

a(n) · · · a(n−N −M + 1)
]T

is assumed independent and identically distributed (i.i.d) and
the symbolsa(n) ∈ A which has cardinalityS. The chan-

nel is represented by a FIR filterh =
[

h0 · · · hN−1

]T
.

Additive noise is white, Gaussian, uncorrelated from the
transmitted sequence, its varianceσ2

n is given according
the signal-to-noise ratio (SNR) and will be denoted by

v(n) =
[

v(n) · · · v(n−M + 1)
]T

. The equalizer,
which has finite impulse response (FIR) denoted byw(n) =[

w(n) · · · w(n−M + 1)
]T

, is feed by the channels out-

putsx(n) = x̄(n) + v(n) wherex̄(n) =
N−1∑
i=0

hia(n − i) are

the noiseless channel outputs.N andM are, respectively, the
channel and equalizer lengths. The equalizer output is denoted
by y(n) = wT (n)x(n).

The rest of the paper is organized as follows: Section II
presents the proposed criterion and related cost function; con-
vergence properties are described in Section III; in Section IV it
is shown a link between the proposed criterion and the CM one,
such as Sato e Godard ones; Section V presents simulation re-
sults with the performance evaluation of the proposed criterion
and, finally, in Section VI the conclusions are stated.

II. PDF ESTIMATION-BASED BLIND CRITERION

Let wideal an ideal linear equalizer, the output of the equalizer
can be written as

y(n) = wT
idealx(n), (1)

where
x(n) = Ha(n) + v(n) (2)

andH is the convolution matrixof the channel of dimension
M × (N + M − 1) [7].

Then, using Equation (2) in (1), it is possible to write:

y(n) = (Ha(n) + v(n))T wideal

= aT (n)HT wideal + vT (n)wideal

= aT (n)HT wideal︸ ︷︷ ︸
gideal

+vT (n)wideal

= aT (n)gideal + ϑ(n)
= a(n− δ) + ϑ(n),

(3)

wheregideal is the ideal system response,δ is a delay andϑ(n)
is a random variable (r.v.) assumed Gaussian1 [7].

1This assumption is the same in Bussgang algorithms.
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Equation (3) states that the pdf of the signal on the output of
the equalizer is a mixture of equiprobable Gaussians (since the
transmitted symbols are i.i.d.) given by:

pY,ideal(y) =
1√

2πσ2
ϑ

· 1
S
·

S∑

i=1

exp
[
−|y(n)− ai|2

2σ2
ϑ

]
, (4)

where theai are the possible values ofa(n − δ) that are also
symbols of the transmitted alphabetA.

Since the pdf of the equalized signal is known, it is desired
to construct a criterion that forces the adaptive filter to produce
signals with the same (or almost) pdf than the ideal one. This
leads to the well known measure of similarities between strictly
positive functions (as the pdfs), theKullback-Leibler Divergence
(KLD) [6].

In order to use the KLD it is constructed a parametric model,
which is function of the filter parameters, to provide pdf estima-
tion [7], a natural choice is the same model of mixture of Gaus-
sians like that one in Equation (4) wherey(n) = wT (n)x(n),
then

Φ(y, σ2
r) =

1√
2πσ2

r︸ ︷︷ ︸
A

·
S∑

i=1

exp

(
−|y(n)− ai|2

2σ2
r

)
, (5)

is the chosen parametric model whereσ2
r is the variance of each

Gaussian in the model.
In pattern classification field these kind of parametric func-

tions, which are used to measure similarities with other func-
tions, are calledtarget functions[7].

Then, applying KLD to compare Equations (4) and (5) it has:

Dp(y)||Φ(y,σ2
r) =

∞∫

−∞
p(y) · ln

(
p(y)

Φ (y, σ2
r)

)
dy

=

∞∫

−∞
p(y) · ln (p(y)) dy −

∞∫

−∞
p(y) · ln (

Φ(y, σ2
r)

)
dy,

(6)

wherep(y) = pY,ideal(y).
Minimize Equation (6) is equivalent to minimize only the

Φ
(
y, σ2

r

)
dependent term, it means:

JFP(w) = −E
{
ln

[
Φ

(
y, σ2

r

)]}

= −E

{
ln

[
A ·

S∑

i=1

exp

(
−|y(n)− ai|2

2σ2
r

)]}
.

(7)

The Fitting pdf (FP) criterion corresponds to minimize
JFP(w) (Equation (7)). Furthermore, it is known that minimize
Equation (7) corresponds to find the entropy ofy if Φ

(
y, σ2

r

)
=

pY,ideal(y) [8, p. 59].
An stochastic version for filter adaptation is given by:

∇JFP(w(n)) =

S∑
i=1

exp
(
− |y(n)−ai|2

2σ2
r

)
(y(n)− ai)

σ2
r ·

S∑
i=1

exp
(
− |y(n)−ai|2

2σ2
r

) x∗

w(n + 1) = w(n)− µw∇JFP(w) .

(8)

The adaptive algorithm which uses the proposed criterion will
be calledFitting pdf Algorithm (FPA). Equation (8) shows an
important property of the algorithm, it takes in account the phase
of the transmitted symbols.

The computational complexity of this algorithm is propor-
tional to the computation ofS exponentials which are required
by Equation (8). Thus, its complexity is a little higher than other
LMS-like algorithms.

Other important point is, although the ideal equalizer is
known to have infinity length, the use of the FP criterion does
not requires a long filter to compensate the channel effect. It has
been observed, through simulations, the length of the equalizer
for this criterion has the same order of other blind criteria.

• The parameterσ2
r :

As shown in the previous section, the parametric model used
to update the filter coefficients is alsoσ2

r dependent. This pa-
rameter plays an important role once it is the variance of each
Gaussian in the parametric model.

Moreover,σ2
r is also important for convergence rate because

it modifies the effective step size, it means,µeff = µw

σ2
r

. In classi-
fication field this parameter is similar to thetemperatureone in
annealing processes [7].

A numerical problem that arises with the use of the FPA is
the nonconvergence for very small values ofσ2

r . This is due to
the Gaussians being very sharp and much more difficult to fit the
data on them. This model have also been observed in [9] where
the ideal pdf of the received signal is assumed to be a mixture
of impulses and later a Gaussian mixture model is considered in
order to make the assumption more realistic and feasible.

Finding the optimum value forσ2
r parameter is still under in-

vestigation.

III. C ONVERGENCEPROPERTIES

The behavior study of the FP cost function is done briefly. It
is used a BPSK (Binary Phase Shift Keying) random sequence
transmitted through an AR (Autoregressive) and MA (Moving
Average) channels with one pole and one zero, respectively, over
the real axis which have the following transfer function:

HAR(z) =
1

1 + αz−1
, (9)

and
HMA (z) = 1 + αz−1. (10)

Forα = 0.6, µeff = 10−2, σ2
r = 0.1 and SNR= 10dB, Fig. 1

shows the cost function and the corresponding contour plot and
trajectories of 20 FPA simulations (with different initializations)
for the AR channel. It was considered an equalizer with two
coefficients.

With the same parameters, Fig. 2 shows the cost function
and the corresponding contour plot and trajectories of 20 FPA
simulations (with different initializations) for the MA channel.
Again, a two coefficients equalizer was considered.

One can easily note that the FP cost function presents global
and local minima and convergence behavior is highly initializa-
tion dependent as in theconstant modulus(CM) criterion. This
characteristic shows (as Figs. 1 and 2 illustrate) the phenomenon
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Fig. 1. (Up) FP cost function for AR channel. (Down) Corresponding contour
plot and trajectories of 20 simulations (µeff = 10−2, σ2

r = 0.1).

of ill-convergence also present in the FP criterion. It worths to
mention that the cost function for the CM criterion is pretty sim-
ilar to the FP one. Nevertheless the presence of local minima in
the cost function, it has been observed that the global minima
are pretty close to those ones from the Wiener solution [10].

Next section is devoted to formalize mathematically the local
convergence property of the criterion observed in the simula-
tions.

• Convergence in FP Criterion:

Inspired by the local convergence analysis presented in [11],
which uses a mixed adaptation strategy switching from the
CMA to a criterion based on a mixture of Gaussians, in this
section is presented a brief analysis that shows the local conver-
gence property observed by computational simulations.

As previously stated (Section II), the equalizer inputs are
given byx = Ha(n)+v(n). The aim is to obtain a filter as close
as possible of an optimum one represented bywopt which is con-
sidered to providewT

optHa(n) = a(n− δ) wherea(n− δ) = ai

and1 ≤ i ≤ S. It is also considered some perturbation in the
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Fig. 2. (Up) FP cost function for MA channel. (Down) Corresponding contour
plot and trajectories of 20 simulations (µeff = 10−2, σ2

r = 0.1).

optimum filter estimation, it meansw = wopt + ∆w, in order
to analyze its influence on the convergence when the solution is
near to a region of minimum (global or local).

In the cost function (7) it is retained only the term correspond-
ing to ak = a(n − δ) which the equalizer output is closer and
the other components are neglected. Thus,

JFP(w) =

= −E

(
ln

"
A ·

SX
i=1

exp

 
−
��wT HT a(n) + wT v(n)− ai

��2
2σ2

r

!#)
≈ −E

(
ln

"
A · exp

 
−
��∆wT HT a(n) + wT v(n)

��2
2σ2

r

!#)
≈ −E

(
−
��∆wT HT a(n) + wT v(n)

��2
2σ2

r

+ ln (A)

)
≈ σ2

a∆wHHHH∆w + σ2
nwHw

2σ2
r

+ ln (A)

(11)

whereσ2
a indicates the average power of the transmitted se-

quence andσ2
n is the input noise variance. Hence, the gradient
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can also be approximate by:

∇JFP(w) ≈ σ2
a

2σ2
r

(
HHH∆w +

σ2
n

σ2
a

w
)

(12)

whereσ2
n

σ2
a

is the inverse of the signal-to-noise ratio (SNR).
In the absence of noise (SNR→∞) the following LMS adap-

tation rule is obtained:

w(n + 1) = w(n)− µ
σ2

a

σ2
r

HHH∆w(n)

wopt(n + 1) + ∆w(n + 1) = wopt(n) + ∆w(n)

− µ
σ2

a

σ2
r

HHH∆w(n) (13)

Since the optimum weight vector is not time instant-dependent
it follows:

∆w(n + 1) = ∆w(n)
(
I− µ

σ2
a

σ2
r

HHH

)
, (14)

whereI is the identity matrix. This recursive rule converges if:

0 < µ <
4σ2

r

σ2
aλmax

(15)

whereλmax is the greatest eigenvalue ofHHH .
The result in (15) confirms our intuition, stated in Section II,

that theσ2
r strongly influences the convergence speed due to its

“control” on the convergence factor.
Unfortunately, it cannot be assured the global convergence

independently of the initialization as in the CM criterion. This
issue is still under study for a formal mathematical formulation.

The results presented in this section could indicate that CM
and FP criteria have a link and this issue is addressed in next
section.

IV. A L INK TO THE CM CRITERION

In the previous section it has been observed that the FP crite-
rion has the same convergence characteristics than the CM one,
then it seems reasonable to compare the FP criterion with it and
find some link or equivalence.

Thinking about measure of similarities between functions,
other criteria have also a parametric function (target function,
fCM(·)) used to find the equalizer outputs. In that case, the CM
criterion is written as a measure of similarities between func-
tions to find some link between both criteria, the CM and FP
ones.

Using the same approach to find the cost function, for the CM
criterion the following equation is given:

JCM(w) = −E {ln (fCM (y,w, p))} , (16)

wherep chooses the criterion to Sato criterion (p = 1) and Go-
dard one (p = 2). But it is known that

JCM(w) = E
{

(|y|p −Rp)
2
}

, (17)

then to find the equivalent target function, Equations (16) and
(17) have to be equal, resulting

fCM(y,w, p) =
exp

[
(|y|p −Rp)

2
]

∞∫
−∞

exp (|ξ|p − 1) dξ

, (18)

where the term in the denominator is used to guarantee that
fCM(y,w, p) has unity module. It can be then seen that the CM
criterion has the same structure for the parametric function that
the FP one.

It has also been simulated the target functions for the FPC
with different values ofσ2

r and compared them with those ones
from the CM criterion (Sato and Godard), Fig. 3 shows the tar-
get functions for BPSK modulation.
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Fig. 3. Target functions for FP and CM criteria.

It is observed that for some choice ofσ2
r the CM and FP target

functions are equivalent. It wonders that this value is modulation
type-dependent and, as mentioned in Section II, an strategy to
find the optimum value is still under investigation.

Moreover, for more complex modulation schemes, the FP cri-
terion target function can better fits the idealized equalizer out-
put pdf withS Gaussian kernels. Thus, since Equation (8) can
take into account even complex symbol parts and multilevel al-
phabets, it can be predicted an improved performance w.r.t. the
CM criterion.

V. SIMULATION RESULTS

For performance evaluation, the FPA has been compared with
the CMA in the equalization context. A QPSK modulation
transmitted over a channel with the following impulse response
is used:

h = [ 2− j0.4 1.5 + j1.8 1 1.2− j1.3 0.8 + j1.6 ]T .
(19)

This channel has been used in some recent works to illustrate the
robustness of algorithms facing a very distorsive channel [12].

As merit figure, it has been used the measure of residual in-
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terference (RI), defined as:

RI(n) =

∣∣∣∣
∑
k

|gk(n)| −max
k
|gk(n)|

∣∣∣∣
max

k
|gk(n)| , (20)

wheregk(n) is thek-th element of the vectorg(n) = HT w(n).
The simulation parameters were: filters with 30 taps for both

algorithms with center-spiked initialization [6] andµw = 10−3

for both algorithms and SNR = 30 dB. FPA has also usedσ2
r =

0.29. Fig. 4 shows the RI evaluation for both algorithms.
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Fig. 4. Residual interference evolution for FPA and CMA.

One can easily note that FPA has a faster convergence than
the CMA, it also worths to mention is that final performance is
practically the same for both of them with a little gain from the
FPA. The faster convergence is due to the fact FPA uses more
suitable target function that better fits the transmitted signals
characteristics than the CMA that considers the modulus only.
However, it should be strongly emphasize that CMA requires
a phase recovering device for correctly match the constellation
with the transmitted one whereas the FPA could done it by itself,
as shown in Figures 5 and 6.

VI. CONCLUSIONS ANDPERSPECTIVES

In this paper it was proposed a new blind information-
theoretic based criterion for adaptive equalization. The deriva-
tion of the cost function is done by means of the estimation of
the ideally equalized signal through a parametric model result-
ing in a sort of entropy minimization of the equalizer output
signal. Convergence properties are briefly studied in order to
clarify some important points.

It has also been shown that the proposition has a link with
the constant modulus criterion when that criterion is studied as
a measure of similarities between two functions.

Through simulations it has been observed that, for some
cases, the FPA presents faster convergence than the CMA, this
property and the interesting issue of the phase recover ability of
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Fig. 5. Equalizer output signal constellation for the FPA.
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Fig. 6. Equalizer output signal constellation for the CMA.

the FPA may indicate a plausible alternative for blind equaliza-
tion.

As perspectives to this work, we note that the parameterσ2
r

plays an important role on the FP cost function and deserves
much more investigation on it. As well, the consideration of
more complex modulations (nonconstant modulus) may provide
some gain to the FPA once it considers a target function with
the number of Gaussian kernels equals the number of symbols
from the modulation alphabet. As another front, a multiuser
version of the algorithm is under investigation for space-time
signal detection.
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