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Abstract – The problem of shortening the effective channel impulse
response in xDSL is addressed. A new approach is described based
on linear phase FIR equaliser filters. The mathematical framework
for the LPIRS method is developed and simulation results are
presented for several VDSL loops.
For a similar performance, the new method offers a design with
considerably lower computational complexity and a simpler
implementation, on either DSP or dedicated hardware solutions.

I – INTRODUCTION

Discrete Multitone Modulation is a powerful modulation
scheme [1], adopted by the standardisation bodies [2], [3]
in the development of recent xDSL (Digital Subscriber
Line) standards. One of the main issues in the xDSL
systems is the severe attenuation and distortion caused by
the channel and other services on the same bundle. To
overcome these channel effects on the transmitted signals,
equalisation techniques are commonly used in time [4],
[5], [6], [7], [8] and frequency [9] domain. The
equalisation process can be simplified by periodically
extending each symbol with a convenient number of
prefix and suffix samples [1]. Hence, circular convolution
can be used instead of linear convolution, thus the channel
equalisation can then be easily done in the frequency
domain. Unfortunately, this is only possible if the
effective length of the channel impulse response is shorter
than the guard period (cyclic prefix and suffix). In order to
shorten the impulse response several methods have been
proposed [4], [5], [6], [7], [8], based on FIR (Finite
Impulse Response) equalisers.
In this paper we describe an impulse response shortening
method based on linear phase FIR equalisers.
In the next section we review the original Minimum
Shortening Signal-to-Noise Ratio (MSSNR) method [4]
and the improvements introduced in [5]. In section III we
develop the Linear Phase Impulse Response Shortening
(LPIRS) method and the mathematical framework that
leads to the optimal solution for every type of linear phase
filter, based on full rank extension matrices.
Simulation results are presented in section IV which show
that the achieved shortened signal noise ratio (SSNR) are

similar to the other methods, with a considerably lower
computational complexity.
Finally, in section V, we discuss the influence of some
design parameters, such as, the filter type (symmetry) and
length, and draw conclusions about the new method.

II – MAXIMUM SHORTENING SNR METHOD

Unlike previously done [7], this method explicitly uses the
length ν of the cyclic prefix CP as the desired effective
length of channel impulse response, thus minimising the
channel’s ISI (Inter Symbolic Interference). As Melsa et
al. refer in [4], there is no straight relation between the
achievable bit rate and this method, but this is surely a
good criterion. The coefficients of the optimal shortening
filter are obtained by an eigenvector decomposition of the
energy function SSNR.
Consider the effective channel heff in matrix form as

heff = Hw, (1)
where H is the convolution matrix of the channel impulse
response and w is the equaliser filter of length t. Defining
the vector hwin as a window of ν+1 consecutive samples of
heff, starting at sample d, and the vector hwall as the
remaining samples of heff, they are given by
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The energy of both vectors can be expressed as

AwwwHHwhh T
wall

T
wall

T
wall

T
wall == (4)

BwwwHHwhh T
win

T
win

T
win

T
win == , (5)

where A and B are presumably positive definite matrices.
The solution to the shortening problem can be found by
minimising (4) or maximising (5).
Originally, in [4], the optimal solution was found by
minimising the energy of hwall. To avoid an unbounded
solution [6], an unit energy constraint was imposed on
hwin, given by

1
2 =winh . (6)

Assuming that matrix B is positive definite, we can use
Cholesky decomposition to obtain

( )( ) TTT BBDQDQQDQB == , (7)
where D is the diagonal matrix formed from the
eigenvalues of B and the columns of Q are the
orthonormal eigenvectors of B. Defining the following
matrix

( ) ( ) ( ) 1111 −−−−

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==
TT BABQDADQC , (8)

the optimal solution is given as
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where lmin is the unit-length eigenvector corresponding to
the minimum eigenvalue λmin of C.
The optimal shortening SNR is defined as
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which depends on the minimum eigenvalue λmin of the
composite matrix C. This approach holds as long as B is

non-singular and B  exists, which is true if the length of
the equaliser t is shorter than ν [5].
In [5], the solution to the shortening problem is found by
maximising (5) and imposing an unit energy constraint on
hwall,

1
2 =wallh . (11)

and assuming that matrix A is non-singular. So, A can be
decomposed using Cholesky decomposition as

( )( ) TTT AADQDQQDQA === (12)
and the new composite matrix C is defined as

( ) ( ) ( ) 1111 −−−−
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The new solution is given in [5] as
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where lmax is the unit-length eigenvector corresponding to
the maximum eigenvalue λmax of C.
The new shortening SNR is then defined as
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This new solution holds for every choice of t and, as it
was shown in [5], the performance is the same as the
original [4].
A common and key issue is to guaranty the non-
singularity of both A and B matrices. By ensuring that
there is at least one non-zero sample of heff outside hwin,
guaranties, by definition, that A is positive definitive. The
same notion can be applied to matrix B.

III – THE LPIRS METHOD

Linear phase is an important property in digital signal
processing. It ensures the absence of phase distortion on
the signal (only an integer delay) and a simpler
implementation complexity, in regard of the number of
required multipliers.
Having this in mind, we propose to constraint the
equaliser filter w to have linear phase. This can be easily
done as

Lxw =L , (16)
where wL is the linear phase equaliser filter of length t, L
is an extension matrix (see Table 1 and 2) and x is a
generic vector.

TABLE 1: Extension matrices ( )2tt×L  for even length

vectors.
Symmetric Anti-symmetric
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TABLE 2: Extension matrices ( )( )21−× ttL  for odd length

vectors.
Symmetric Anti-symmetric
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There are four possible L matrices depending on the
length of vector wL and the type of symmetry adopted.
As in [4] and [5], we rewrote (4) and (5) as

xAxwHHwhh L
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where AL and BL are given by

ALLA T
L = , (19)

BLLB T
L = . (20)

In this work we adopted the solution proposed in [5], since
it holds independently of the lengths of the CP or the
equaliser.
Assuming that a proper delay is chosen so that A is
positive definite, we can easily show that AL is also
positive definite as

0)()()( >=== xAxxALLxLxALxAww L
TTTT

L
T

L ,
(21)

since the matrices L are full rank ( 2t  or ( ) 21−t ,
respectively, for even or odd length filters).
As in [5], Cholesky decomposition is used on matrix AL,

( )( ) T
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T
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Using a similar development as in [5], we define
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and the optimum solution for the equaliser wL is given by
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where 
maxLl is the unit-length eigenvector corresponding to

the maximum eigenvalue maxLλ  of CL.

Is very important to refer that the dimensions of matrices
AL and BL are 22 tt ×  or ( ) ( ) 2121 −×− tt , which
results in a substantial complexity reduction on the
Choleski decomposition and eigen analysis, when
compared to [4] and [5].

IV – SIMULATION RESULTS

To evaluate the performance of the proposed method, we
have done several experiments on different VDSL test
loops from [3] and [10].
In Fig. 1 we show the original impulse response of the
FSAN Cabinet #3 test loop, one of the most difficult
VDSL test loops. In Fig. 2 we show the impulse response
of the same loop after MSSNR equalisation.
In all figures we have used 4096 carries, a target impulse
response length of 64 samples and a equaliser w with a
length 10=t .
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Fig. 1. FSAN Cabinet #3 impulse response.
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Fig. 2. FSAN Cabinet #3 original and MSSNR equalised
impulse response (with dashed line).

In Fig. 3 is represented the impulse response of FSAN
Cabinet #3 test loop, with MSSNR and LPIRS
(symmetric) equalisation.
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Fig. 3. FSAN Cabinet #3 MSSNR (with dashed line) and
LPIRS equalised impulse response.

For performance comparison purpose we present several
results in Table 3 and 4, considering the same target
impulse response and number of carriers as in the previous
figures. In Table 3 we have used an equaliser of length

10=t .

TABLE 3: Results in dB for an even length equaliser.

LPIRSTest Loops MSSNR
Symmetric Anti-symmetric

ANSI VDSL Loop 3 70.00 69.94 69.90
ANSI VDSL Loop 4 38.61 38.38 36.96
ANSI VDSL Loop 7 47.18 39.17 44.79

FSAN FTTEx #3 73.65 68.36 67.47
FSAN Cab #3 11.79 7.94 8.01

In Table 4 we have used an equaliser of length 19=t .

TABLE 4: Results in dB for an odd length equaliser.

LPIRSTest Loops MSSNR
Symmetric Anti-symmetric

ANSI VDSL Loop 3 71.72 71.72 71.62
ANSI VDSL Loop 4 40.33 39.92 39.45
ANSI VDSL Loop 7 52.90 47.93 48.23

FSAN FTTEx #3 81.53 78.11 77.18
FSAN Cab #3 12.05 8.17 9.06

Considering the short equaliser filter lengths (low
complexity implementation), the results in Tables 3 and 4
show, from a practical point of view, a similar
performance between the MSSNR and LPIRS methods,
taking in consideration the high levels of obtained SSNR
(with the exception of the highly demanding FSAN
Cabinet #3 loop).

V – CONCLUSIONS

A new approach to the problem of shortening the effective
channel impulse response in xDSL as been described
using linear phase FIR equaliser filters. The use of the
extension matrices is the key issue in this new method.
The resulting objective functions are defined with half
size of the original matrices, leading to notably
complexity reduction. At the moment this is a crucial
point as neither DSP nor dedicated hardware solutions are
able to implement the full VDSL standards. As shown in
section IV, the equaliser performance attained by the
LPIRS method is very much the same as that of the
reference method proposed by Melsa et al.
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