
A Fast Algorithm for Signal Subspace
Tracking, Based on the Jacobi Method.

Bruno Cosenza de Carvalho1 and Jacques Szczupak2

1,2Departamento de Engenharia Elétrica - Pontifícia Universidade Católica do Rio de Janeiro, RJ, Brazil
1Instituto de Pesquisa e Desenvolvimento, Rio de Janeiro, RJ, Brazil

2Engenho Pesquisa, Desenvolvimento e Consultoria, RJ, Brazil
1cbruno@ipd.eb.mil .br, 2jsz@uol.com.br

1tel: 55-21-24106271, 1fax: 55-21-24106270

Abstract–This work presents a new fast computational algorithm for
decomposing a square signal symmetrical matrix, based on the
Jacobi method. It is applied to real time systems with data
acquisition updated almost sample by sample. The fast
computational technique first involves the Data Matrix formation
stage, so as to obtain the desired updated data matrix symmetry. In
a second step it is developed the final fast algorithm implementation.
A comparison is presented with the Golub-Kahan step algorithm,
indicating gains and limitations of the proposed approach.

I. INTRODUCTION

he increasing use of “subspace signal
processing” [1] is already a reali ty. Among

the many factors that contribute to this phenomenon is the
widely use of orthogonal codes in digital spread spectrum
techniques modulation processes besides sensor array
processing and many other estimation problems. This type
of analysis is speciall y indicated to noise and interference
environments, where it achieves excellent result [2]. On
the other hand, since the procedures are usually based on
the SVD (Singular Value Decomposition) algorithm [3,4],
it is computationally involved; severely limiting it’s on
line application.

Recently published papers dealt with this type of
problem. Eldén and Sjöström [5] focused the problem
from the Toeplitz matrices point of view. This situation is
quite common when autocorrelation matrices of acquired
data are focused. Pango and Champagne [6] presented a
method applying Givens rotation to matrices of increasing
dimensions with time, having the form:

 −=
)(

)1(
)(

n

n
n

Hx

A
A

λ , (1)

where)(nHx is the input vector at time n and λ is a real

positive number less than 1. Vanpoucke and Moonen [7]
use this same matrix model (Eq. (1)) directly applied to
the data matrix. Stewart [8] also worked with the updating
Data Matrix, described in Eq. (1), applying the URV
decomposition. Moonen, Van Dooren and Vanderwale [9]
use the QR-updating scheme. Therefore, afterwards, it
needs a SVD step. Basically all of the previous methods

don't work with limiting the shape of the Data Matrix in
order to accelerate the computation process.

This paper proposes a new and faster matrix
decomposition procedure, based on Jacobi method [1].
Looking for real time solutions, this approach deals with
the data acquisition itself, avoiding the autocorrelation
matrix step. Actuall y the Data Matrix is considered as
initialized by the first five data samples, increasing size
with subsequent samples, up to a limiting MM ×
dimension. The proposed approach kind of adapts from
the previous decomposition stage to an updated version
for every pair of new samples.

II . THE DATA ACQUISITION MATRIX MODEL

The main objective of this work is to get a new
Data Matrix decomposition algorithm recursively, using
the previous decomposition to build a conveniently close
estimate yielding a fast update. Actuall y, the proposed
approach updates the Data Matrix decomposition for
every new pair of data samples to be included in the Data
Matrix.

The approach is based on the Jacobi Algorithm,
but in order to achieve the desired results it is necessary to
work with symmetrical data matrices at every stage of the
process. Therefore, it is necessary to describe the data
samples in the form of a symmetric matrix, maintaining
symmetry with updating new data samples. Due to the
symmetry, the Data Matrix initiates composed by the first
five samples, increasing size with subsequent samples, up
to a limit dimension, M. From this point on the algorithm
incorporates new samples, preserving matrix symmetry
and size.

The matrix updating process is performed for
every pair of new samples. Therefore the matrix is
updated for n=1,3,5,7...The kk × dimention input Data
Matrix Ak, will have the form

+−

+−+−
=

)()1(

)1()22(

)(

nxknx

knxknx

nk

�

���

�

A (2)

T

According to Eq. (2), it is assumed the first
sampled Data Matrix is size 33×)3(=k , containing the

first initial five samples. New samples are incorporated
according to Eq. (2), such that for

−

−−
=+

)()(

)()2(

)(1

nxknx

knxn

n
k

k �
�A

A (3)

When reaching a desired size (MM ×) the
matrix will maintain its dimension. As such, for every last
line and column inclusion, the first line and column are
eliminated. This is possible for every pair of new samples.
Therefore,

+−

+−−
=

−

)()1(

)1()2(

)(
1

nxMnx

Mnxn

n
M

M �
�A

A (4)

For

[]TL nxknx)1()(−−= �x (5)

Equation (3) may be written as:

 −
=+

)(

)2(

)(1

nx

n

n
T
L

Lk

k

x

xA

A (6)

Let V0 be the matrix eigenvector for the Schur[1]
decomposition of)2(−nkA , therefore

T
k n 000)2(VAVD −= , (7)

where
0D is a diagonal matrix. Defining V1 as

=

1

0

1 � ���

�

0

0V

V (8)

and applying it to)(1 nk+A , it follows from Eq. (4) that

 −

=

1)(

)2(

1

00

1 � ���

�

� ���

�

0

0V

x

xA

0

0V

D

T

T
L

Lk
q

nx

n
(9a)

=

)(0

00

1

nxTT
L

L

q

� ���

�

Vx

xVD

D (9b)

Therefore, the procedure yields q
1D a quasi-

diagonal matrix, except for the added last line and column.
However, although not diagonal, the matrix is

still symmetric. The Jacobi method is specially tailored for
decomposing this type of square, symmetrical matrix, with
a large number of off-diagonal zeros.
Equation (8) indicates a good estimate for the)(1 nk +A
eigenvectors. This fact is responsible for saving a large
number of iteration stages in subsequent evaluations.

When the data acquisition matrix has already
achieved the limiting size M, the considered estimate of
the new eigenvector matrix is simply the old eigenvector
matrix. This type of choice has shown to present positive
effects, improving the evaluation efficiency.

III. THE JACOBI METHOD

The Jacobi method for the evaluation of
eigenvalues and eigenvectors is particularly interesting for
symmetrical square matrices. It accomplishes updating of
the type AJJA T← in an iterative way, such that, the
new matrix A has a form closer to a diagonal matrix than
its predecessor does. Another relevant characteristic of the
Jacobi algorithm is the high degree of parallelism in its
implementation. Therefore, if processing speed is the final
target, one may add to the results obtained in this study
the use of a parallel processor structure.

The Jacobi Method continuously applies rotations
to the matrix to be decomposed. The rotation matrix is
identical to the Givens rotation [3], having the form

j

i

cs

sc

ji

−
=

1000

00

00

0001

),,(

���

�����
���

�����
���

�����
���

θJ
(10)

ji

This way, given a pair (i,j), where Mji ≤≤≤1 ,

it is enough to find the pair sine/cosine (s,c) that
diagonalises the matrix A by

−

−

←

cs

sc

aa

aa

cs

sc

b

b

jjji

ijii
T

jj

ii

0

0
(11)

The algorithm for estimating the pair s-c can be
easily found in the literature [3].

Another advantage presented by Jacobi’s
approach, exploring the preserved matrix symmetry, is
that the updating of the matrix A can be performed in 6k
operations (where k is the dimension of this square
matrix). It is also common to establish a criterion to stop
the Jacobi algorithm. This is made based on largest off -
diagonal entry of matrix A defined as

,)(
1 1

2∑∑
=

≠
=

=
k

i

k

ij
j

ijaoff A (12)

the “norm” of the off-diagonal elements of kk × matrix
A, where

ija represents the matrix elements. The tests,

using Eq. (12), should be made after completing N Jacobi
matrix updates, where N is given by

2/)1(−= kkN (13)

to guarantee quadratic convergence in the process [3].

IV. THE PROPOSED ALGORITHM

The Jacobi Algorithm, used in this study, was of
the Cyclic-by-Row type. In this case there is a sequence of
previously chosen pairs (i,j) that decreases the
computational cost for decomposition updates. The
number of floating point operations required by this
algorithm is of O(k) flops. For instance, the proposed
sequence [3] for the case k=4 is:

{ }�),2,1(),4,3(),4,2(),3,2(),4,1(),3,1(),2,1(),(=ji

The algorithm has two phases: first the data
acquisition matrix will increase in size up to MM × .
During the second phase the Data Matrix has a fixed size

MM × . The difference between these two phases is how
to work with the old eigenvector matrix during the update.
This is detailed in the following steps:

Phase 1

1. Acquire the first 5 samples to set up the 33× Data
Matrix, according to Eq. (1)

2. Evaluate the corresponding matrix eigenvalues and
eigenvectors using the Cyclic by Row Jacobi
Algorithm for symmetrical square matices.

3. Acquire two new data samples, updating the Data
Matrix to the 55× dimension

4. Update eigenvalues and eigenvectors starting from
estimates given by Eq. (9), using the previously
evaluated eigenvectors and eigenvalues. This is done
updating the old eigenvector matrix according to Eq.
(7).

5. Repeat items 4 and 5, sequentially, until the final
Data Matrix dimension is M (previously determined
value)

Phase 2

6. Discard the two oldest data samples by deleting the
first line and column of the old Data Matrix. The
matrix dimension M is recovered by bordering this
reduced dimension matrix, M-1, with a new last line
and column according to Eq. (2)., incorporating the
two new data samples.

7. Evaluate the new data acquisition matrix eigenvectors
and eigenvalues using the Cyclic by Row Jacobi
Algorithm for symmetrical square matrices, starting
from the eigenvectors previously evaluated as
indicated in Eqs. (9).

V. ILLUSTRATIVE CASE

In this section some comparative results are
presented, using the number of floating point operations
(flops) as a comparison basis. The proposed technique is
compared to an equivalent implementation based on
Golup-Kahan step approach [3,4]. A number of cases
were considered, always using the linear combination of
six different sinusoids as the clean input sequence. The
final input sequence results from contamination by
additive white Gaussian noise, yielding a final 15 dB
signal to noise ratio.

Figures 1 to 4 represent the comparative
performance, respectively for M=10, 20, 30 and 40, as a
function of data samples. For all considered cases the total
mean square error evaluated on the difference between
final eigenvalues computed by both methods, proposed
and Golub-Kahan step, was less than 10-7.

In all cases the proposed approach presented
computational gains with respect to the Golub-Kahan
technique. The gain is more accentuated for M=10,
reducing with increased matrix dimensions.

VI. CONCLUSIONS

This paper proposes a new approach to the
eigenvalue-eigenvector evaluation of data structured small
and medium dimension symmetric matrices for real time
processing.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Golub-Kahan

f
l
o
p
s

samples

Jacobi

Figure 1–Simulation for M=10

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3
x 10

5

Jacobi
Golub-Kahan

samples

f
l
o
p
s

Figure 2–Simulation for M=20

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8
x 10

5

Jacobi
Golub-Kahan

f
l
o
p
s

samples

Figure 3–Simulation for M=30

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5
x 10

6

Jacobi
Golub-Kahan

samples

f
l
o
p
s

Figure 4 – Simulation for M=40

Instead of working with correlation matrices, the
method is based on a new form of Data Matrix
representation, such as to preserve at every time instant a
desired matrix symmetry property.

The new Data Matrix is recursively built , starting
from the first five data samples forming a squared,
dimension 3 matrix. The Jacobi Method yields the
corresponding eigenvalues-eigenvectors. As a new pair of
data samples is acquired, the Data Matrix dimension
increases, being the new eigenvalues-eigenvectors derived
from close estimates based on the previously determined.
As a limiting dimension is achieved, the algorithm is
slightly modified in order to discard line and column as a
new pair of line and column is incorporated to the process.
This way the limiting dimension is maintained through the
process.

As the previous pairs of eigenvalue-eigenvector
are used as estimates for the new pairs and as they are
reasonably closed to the new values, subsequent use of
Jacobi Method has fast convergence, leading to
computational gains with respect to conventional
procedures. This is observed in four comparative cases
with a Golub-Kahan step type implementation.

The method efficiency is clearly decreasing with
Data Matrix dimension, being comparable and sometimes
worst than Golub-Kahan step for M equal or larger than
40. It is important to notice this comparison does not take
into account the evaluation steps necessary to obtain a
correlation matrix. Since it works directly with the data
samples, inclusion of these preparative steps would
produce better comparative results for the proposed
approach.

The performance improves as the final Data
Matrix dimension is achieved.

VII . REFERENCES

[1] R. T. Behrens and L. L. Scharf, “Signal Processing
Applications of Oblique Projection Operators” , IEEE
Trans. on Signal Processing, vol. 42, no. 6, June 1994, pp.
1413-1424.
[2] R. O. Schmidt, “Multiple Emitter Location and Signal
Parameter estimation” , IEEE Trans. Antennas
Propagation, vol. 34, pp. 276-280, Mar 1986.
[3] G. H. Golub and C. F. V. Loan, “Matrix
Computations” , The John Hopkins University Press,
Baltimore, MD, third edition, 1996.
[4] S. Haykin, “Adaptive Filter Theory” , Prentice hall ,
Upper Side River, NJ, third edition, 1996.
[5] L Eldén and E. Sjöström, “Fast Computation of the
Principal Singular Vectors of Toeplitz Matrices Arising in
Exponential Data Modeling” , Signal Processing 50
(1996), pp 151-164.
[6] P. A. Pango and B. Champagne, “On the Efficient use
of Givens Rotations in SVD-based Subspace Tracking
Algorithms” , Preprint submitted to Elsevier Preprint,
1999.
[7] F. Vanpoucke and Marc Moonen, “Factored Spherical
Subspace Tracking” , Integration, the VLSI Journal, vol.
20, Nr. 1, December 1995, pp 3-21.
[8] G. W. Stewart, “An Updating Algorithm for Subspace
Tracking” , UMIACS-TR-90-86, CS-TR 2494, 1991.
[9] M. Moonen, P. Van Dooren and J. Vandewalle, “An
SVD Updating Algorithm for Subspace Tracking” , SIAM
Journal on Matrix Analysis and Applications, vol. 13
(1992), no. 4, pp. 1015-1038.
[10] S. D. Stearns and R. A. David, “Signal Processing
Algorithms in Matlab” , Prentice hall , Upper Side River,
NJ, 1996.

