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Abstract—This work reviews the blind linear prediction (LP) approach
to combat the loss of digital communications system performance due to
intersymbol interference (ISI) and discusses that its alleged robustness to
model order overestimation is restricted to the theoretical conditions of ex-
actly known received signal statistics. To circumvent these limitations, al-
ternative solution criteria to the least-squares optimization underlying the
LP approach are examined together with simulations that point to regular-
ization as the best candidate that balances variance and bias.

I. INTRODUCTION

INTERSYMBOL interference (ISI) associated with signal dis-
persion due to the transmission channel can seriously impair

system performance at the high signaling rates required for re-
cently proposed systems such as those considered for implemen-
tation in the new 3G wireless networks. Traditional approaches
to ISI reduction involve channel characterization via the trans-
mission of training sequences in an often inefficient process as
constant retraining is necessary, vis-à-vis time-varying channels,
that thereby take a heavy toll on the overall information through-
put. Because of this, the goal of “blind” identification (i.e. with-
out training) of the transmission channel parameters has become
a kind of holly grail.

Blind identification algorithms can be classified in two
groups: they are either based exclusively on second order statis-
tics (SOS) of the received signal or on higher order statistics
(HOS). Despite their many merits, HOS algorithms in gen-
eral converge slowly, making them unsuitable for handling fast
changing channels. Furthermore, their performance degrades
markedly when the statistics of the transmitted signals approach
those of a gaussian distribution. These shortcomings stimulated
the development of SOS blind identification algorithms, which
were, however, long thought impossible because the output sig-
nal SOS statistics (autocorrelation) of a channel driven by sta-
tionary inputs is uninformative with regard to channel phase.
This picture changed following Gardner’s [1] observation that
channel phase information is preserved if the transmitted signal
is cyclostationary, as is true for analog QAM signals sampled at
integer multiples of the signaling rate. Since then, intense re-
search resulted in showing that cyclostationarity is equivalently
described by multichannel models which serve as the starting
point for most of today’s algorithms.

Though generally of faster convergence compared to HOS,
SOS algorithms have limitations of their own, namely (a) they
require the satisfaction of some identifiability conditions and
more importantly (b) they are sensitive to errors in the channel
model orders. This lack of robustness to errors in the determi-

Cláudio José Bordin Jr. and Luiz Antonio Baccalá are with the Communi-
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nation of the channel model order remains a major hindrance
to their practical use, since most of today’s order determination
methods (AIC, MDL, etc) tend to be strongly biased towards
order overdetermination when using estimated statistics [7].

Among the various approaches to SOS identification, algo-
rithms based on linear prediction (LP) as proposed originally by
Slock [2], stand out as they are robust to order overestimation
at least when exact statistics are employed. In this work, we
discuss the behaviour of certain batch implementations of LP
algorithms when estimated statistics are involved. In Section II,
we present a general formulation of the channel identification
problem, followed in Sections III and IV by a description of
the LP approach. Actual blind identification considerations and
simulation results are presented in Section V, followed by the
discussion of alternative solution estimation criteria in Section
VI.

II. PROBLEM FORMULATION

Let xk be an i.i.d. unit variance symbol sequence transmitted
over a linear digital communication system. Assuming correctly
acquired carrier synchronism, the continuous-time received sig-
nal can be written as:

y(t) =
∑

k

xk h(t − kT ) + b(t) , (1)

where h(t) is the combined impulse response of the channel and
the transmit and receive filters; b(t) is additive white zero mean
noise.

The sequence yn, obtained by uniformly sampling the re-
ceived signal y(t) with period τ = T

L , L ∈ N can then be
expressed as:

yn = y(nτ) =
∑

k xk h(nτ − kT ) + b(nτ)
=

∑
k xk h

((
n
L − k

)
T

)
+

b
((

n
L − k

)
T

)
.

(2)

For L > 1, yn is no longer the result of a linear time in-
variant filtering operation. Yet, certain subsequences obtained
through the polyphase decomposition of yn do exhibit this prop-
erty as is immediately apparent from defining the following sub-
sequences:

y
(i)
n = y

((
n + i

L

)
T

)
h

(i)
n = h

((
n + i

L

)
T

)
b
(i)
n = b

((
n + i

L

)
T

)
.

(3)

Under the additional assumption that h(t) �= 0 only for t ∈
[0, (M + 1)T ], (2) can be rewritten as:

y(i)
n =

M∑
k=0

xn−k h
(i)
k + b(i)

n . (4)

which characterizes the channel as a SIMO system.
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III. THE LINEAR PREDICTION BASED ALGORITHM (LP)

Linear prediction techniques for blind identification were first
introduced by Slock, in [2]. The basic idea is that in the ab-
sence of additive noise, the received signal yn admits either a
finite order moving average representation or a finite order au-
toregressive representation. Among other consequences, this al-
lows determining the innovations process ỹn associated with yn

through finite order predictors. Moreover, the innovations pro-
cess ỹn at the n−th instant is totally defined by the n−th trans-
mitted symbol xn leading to the conclusion that the predictors
are equivalent to zero-forcing equalizers in this case.

A. Determination of the prediction error

Before determining the innovations process associated with
the received signal yn , it is convenient to introduce the follow-
ing notation:

Hi � [ h
(0)
i h

(1)
i . . . h

(L−1)
i ]T ∈ C

L×1

H � [ HT
0 HT

1 . . . HT
M ]T ∈ C

L(M+1)×1

Yi � [ y
(0)
i y

(1)
i . . . y

(L−1)
i ]T ∈ C

L×1

Bi � [ b
(0)
i b

(1)
i . . . b

(L−1)
i ]T ∈ C

L×1 .
(5)

Under this notation, the vector innovations process Ỹn asso-
ciated to the vector received signal Yn can be defined as:

Ỹn � Yn − P (Yn | Yn−1, . . . , Y0) , (6)

where P (Yn | Yn−1, . . . , Y0) is the linear least squares estimator
of Yn given [Yn−1, . . . , Y0].

As E YnY H
m = 0L×L , m ≥ n+M , the optimal estimator

given the whole past of Yn equals to the optimal estimator given
the M last samples of the received signal [4]:

P (Yn | Yn−1, . . . , Y0) = P (Yn | Yn−1, . . . , Yn−M ). (7)

For N ≥ M , rewriting (6) leads to:

Ỹn = FN

[
Y T

n . . . Y T
n−N

]T
, (8)

where FN � [ IL −AN ] ∈ C
L×L(N+1). By definition, the

filter FN must be chosen to minimize the prediction error vari-
ance:

FN = arg min tr
FN

FN RN FH
N , (9)

where RN � E [Y H
n . . . Y H

n−N ]H [Y H
n . . . Y H

n−N ].
The underlying optimization problem in FN can be solved by

imposing the orthogonality principle [3], i. e.

E




Yn−1

...
Yn−N


 Ỹ H

n = 0LN×L. (10)

Hence

HN E







xn−1

...
xn−M−N


 [xn . . . xn−M−N ]∗




H

N+1

FH
N = 0LN×L ,

(11)

where HN ∈ C
LN×M+N is the Sylvester matrix of order N

associated with the channel H , i.e.

HN �




H0 · · · HM

. . .
. . .

H0 · · · HM


 . (12)

Pre-multiplying (11) by H#
N (pseudo-inverse) and assuming

that the transmitted signal is unit variance i.i.d yields:

[
0M+N×1 IM+N

]HH
N+1 FH

N = 0M+N×L . (13)

The latter multiplication has the effect [8] of selecting the last
M+N rows of the matrix HH

N+1 which after adequate partition
results in:

HH
N+1 =

[ Ht

Hb

]
⇒ Hb

[
IL

−AH
N

]
= 0M+N×L . (14)

As show in [8] Ht is of the form:

Ht =
[

HH
0 0 . . . 0

] ∈ C
1×L(N+1). (15)

Substituting (15) into (13) yields:

HH
N+1

[
IL

−AH
N

]
= [ H0 0 . . . 0 ]H . (16)

Substituting (16) into (8) yields the minimum least squares
prediction error Ỹn:

Ỹn = FN

[
Y H

n . . . Y H
n−N

]H

= [ IL −AN ]HN+1 [ xn . . . xn−N−M ]H

= [ H0 0 . . . 0 ] [ xn . . . xn−N−M ]H

= H0 xn . (17)

In other words, by (17) the optimal predictor FN is effectively
a zero-forcing equalizer as Ỹn depends only on the signal trans-
mitted at the n−th instant. Moreover, it is also possible to show
that the estimate of the innovations process remains consistent
even if the model order M is overestimated, since the former
result holds for any N ≥ M + 1.

B. Determination of the optimal predictors

In the previous section we computed the minimum prediction
error Ỹn, by implicitly solving the optimization problem repre-
sented by (9). In this section, we derive a closed expression for
the optimal predictors FN . Again, by the orthogonality princi-
ple:

E




Yn−1

...
Yn−N


 Ỹ H

n = 0LN×L . (18)

Substituting (18) into (8) yields:




Yn−1

...
Yn−N




[
Y H

n . . . Y H
n−N

] [
I

−AH
N

]
= 0LN×L . (19)
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Let ri � E YnY H
n+i and the matrices:

pN � [ r1 . . . rN+1 ] ∈ C
L×L(N+1)

RN �




r0 . . . rN

...
. . .

...
rH
N . . . r0


 ∈ C

L(N+1)×L(N+1) ,

(20)
so that:

[
pH

N−1 RN−1

] [
I

−AH
N

]
= 0LN×L . (21)

Using (21) we obtain:

ANRN−1 = pN−1 . (22)

However, since N (pN−1) = N (HH
N−1) = R⊥(RN−1) [4],

we have:
AN = pN−1R

#
N−1 , (23)

which finally yields:

FN =
[

IL pN−1R
#
N−1

]
. (24)

IV. BLIND IDENTIFICATION ALGORITHMS BASED ON

LINEAR PREDICTION

The LP blind identification algorithm due to Abed-Mehrain et
al. [4] is based on the particular form of the innovations process
Ỹn in the additive noise free case:

Ỹn � FN

[
Y H

n . . . Y H
n−N

]H
= H0xn . (25)

Because Ỹn depends only on the signal transmitted at the
n−th instant, any i−th line of FN is a null delay zero-forcing
equalizer (up to a complex scale factor given by h

(i)
0 ). More im-

portantly, FN is completely determined by the covariance ma-
trix RN and can be estimated from the received signal.

Though FN could be used to produce an estimate of the chan-
nel parameters, [4] uses an additional step where the rows of
FN are linearly optimally combined through a vector Kopt ∈
C

L×1, whose function is to minimize the estimation error of xn

from Ỹn:
x̂n = KH

optỸn . (26)

By definition, Kopt must satisfy the Wiener-Hopf Equation:

KH
opt E ỸnỸ H

n = E xnỸ H
n . (27)

but it is easy to see that:

E ỸnỸ H
n = H0H

H
0

E xnỸ H
n = HH

0 .
(28)

where from E ỸnỸ H
n ’s rank, follows that (28) has an infinite

number of solutions and that the one with minimal norm is:

Kopt =
H0

‖H0‖2
. (29)

H0 is unknown a priori but it can be estimated through the
most dominant eigenvector of the prediction error covariance
matrix, i. e. let

D � E ỸnỸ H
n = FNRNFH

N = r0 + pN−1A
H
N (30)

which has a single non-zero eigenvalue λ = ‖H0‖2, associated
to the eigenvector v = H0 ‖H0‖−1. Thus, the zero delay ZF
equalizer gN ∈ C

LN×1 may be estimated as:

gN = FH
N

v√
λ

. (31)

A. Identification

The knowledge of a ZF equalizer gN and of some received
signal second order statistics allows the transmission channel H
to be identified up to a unit norm complex constant because

E Ynx∗
n−l =

M∑
k=0

Hk E xn−kx∗
n−l =

M∑
k=0

Hkδk−l = Hl.

(32)
As a direct consequence:

[
HT

0 · · · HT
M 0T

L×1 · · · 0T
L×1

]T
= E Yn

[
x∗

n · · · x∗
n−N+1

]

=




r0 r1 . . . rN−1

r1 r2 . . . rN

...
...

...
rN−1 rN−2 . . . r2N−2


 gN

(33)

B. Taking σ2
B �= 0 into account

The discussion so far was restricted to exact statistics and no
additive noise. To account for the latter, consider BN represents
white, zero mean noise, independent of the transmitted signal
and of variance σ2

B . Its sole effect is to add the term Iσ2
B to

RN :

ŶN = HN [ xn . . . xn−M−N+1 ]H + BN ⇒
R̂N = HNHH

N + INσ2
B .

(34)

In other words, this means that additive noise introduces bias
into the LP algorithm as gN is no longer a ZF equalizer:

ĝN = gN +[
IL−((RN−1 + IL(N−1)σ

2
B)#−R#

N−1)p
H
N−1

]H

H0‖H0‖−2

(35)
A simple, although certainly sub-optimal [4] procedure for

obtaining unbiased estimates from the LP algorithm is to esti-
mate and subtract the additive noise contribution σ̂2

B:

RN = R̂N − Iσ̂2
B . (36)

Note that an estimate σ̂2
B can be obtained from the LN −N −

M less dominant eigenvalues of the RY . For the sake of robust-
ness, however, it is convenient that the noise power estimates do
not depend on the exact model order.
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V. PERFORMANCE OF THE LP ALGORITHM USING

ESTIMATED STATISTICS

In the previous sections, it was implicitly shown that the LP
algorithm is robust to channel order overdetermination, at least
under exact statistics. In practice, the performance of the LP
algorithm, however, degrades significantly if the channel order
is overdetermined.

To illustrate this, we perfomed Monte Carlo experiments over
1,000 independent realizations, using independent symbols ex-
tracted from a QPSK constellation. The adopted figure-of-merit
was the mean-square estimation error (MSE), defined as:

MSE = 10 log10

1
‖H‖2 Nr

∑
t

‖Ĥ − H‖2 , (37)

where Ĥ are the estimates corrected by the scale factor that min-
imizes the error norm and Nr is the number of experiments.

The effects of the additive noise were quantified in terms of
the noise-to-signal ratio (NSR):

NSR = 10 log10

σ2
B

‖H‖2
. (38)

Figure 1 shows LP algorithm performance employing the
channel model (M = 3) described in (39), using 1,000 symbols
for the estimation of RN , whereas Fig. 2 uses 10,000 symbols
to estimate RN .

H0 =[ 1.62 + 2.30i 1.76 − 1.37i 1.05 + 0.38i ]T

H1 =[−1.36 + 2.20i 1.46 − 0.06i −0.85 − 1.22i ]T

H2 =[ 0.05 − 0.47i 0.11 + 0.24i 1.00 + 0.20i ]T

H3 =[ 0.05 − 0.15i −0.02 − 0.03i 0.09 + 0.01i ]T
(39)
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Fig. 1. Average LP algorithm performance as a function of the NSR using
1,000 received signal samples for the channel model in (39). The curves show
the performance obtained for correct (N = 4) and overestimated (N = 6)
channel orders, using correct and lower bound noise subspace dimensions.

The results shown in Fig. 1 and 2 illustrate the paramount im-
portance of the exact knowledge of the channel model order. As
expected, the performance of the LP algorithm degrades slightly
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Fig. 2. Average LP algorithm performance as a function of the NSR using
10,000 received signal samples for the channel model in (39). The curves show
the performance obtained for correct (N = 4) and overestimated (N = 6) chan-
nel orders, using the correct and the lower bound noise subspace dimensions.

as N increases if the correct noise subspace dimension of RN−1

is considered during the determination of R#
N−1. In fact, adapt-

ing results from [9], it can be shown that:

dimN (RN−1) = dimN (HN−1) = (L−1)(N−1)−M (40)

On the other hand, if M is unknown, so is dimN (RN−1).
Despite this, a lower bound to this dimension can be easily ob-
tained as

min
M≤N−1

dim N (RN−1) = (L − 2)(N − 1) . (41)

Also from the figures, it can be seen that the underestimation
of the RN−1 noise subspace dimension produces a strong per-
formance degradation, causing even non-monotonic behaviour
of MSE with NSR. It is commonly argued in the literature that
the misclassification of some noise subspace eigenvectors as
signal eigenvectors would not cause serious trouble to the es-
timation of AN , since N (pN−1) ⊆ R(RN−1)⊥ [4], which is
approximately verified for the sample estimates. However, as
shown in Fig. 3, the eigenvalue spread of RN−1 strongly in-
creases as the NSR diminishes, overriding improvements in co-
variance matrices estimates.

VI. ALTERNATIVE CRITERIA FOR THE ESTIMATION OF THE

PREDICTORS

When estimated statistics are involved, it is easy to show that
(23) reduces to an estimate of the predictors AN in the least
squares sense. Despite its popularity, the least squares criterion
is known to perform poorly in the presence of data model mis-
matches [11], which is always the case with the LP algorithm,
since RN−1 is unknown a priori. In the next sections, we inves-
tigate the use of alternative estimation criteria for the estimation
of the AN predictors.

It is easy to see that (22) is a special case of the general prob-
lem Ax ≈ b, A ∈ C

m×n and b ∈ C
m×p for which we next

consider the Total Least Squares (TLS) and the Least Squares
regularization (LSr) approaches.
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Fig. 3. Average condition number (with respect to the eigenvalues) of RN−1

as a function of the NSR for the channel model in (39) and N = 6. Each
realization was estimated using 10,000 received signal samples.

A. Estimation by Total Least Squares

The total least squares [6] technique initially seeks:

[ Â B̂ ] = arg min
[ Â B̂ ]

‖[ Â B̂ ] − [ A B ]‖F

subject to R(B̂) ∈ R(Â)
(42)

Once a minimizing [ Â B̂ ] is found, then any xTLS satisfing:

Â xTLS = B̂ (43)

is called a total least squares solution.
The application of the TLS criterion to (23) is somewhat in-

volved due to the reduced rank of RN−1, which leads the solu-
tion to be non-unique. Let UΣV H be the SVD of [RH

N−1 pH
N−1].

Then, from [6], p.62., one can show that:

ATLS
N = −V12V

#
22 , (44)

where V12 and V22 are respectively the blocks formed by the
first L(N − 1) and the last N rows of the last q + N columns of
the matrix V , with q = dim(N (RN−1)) .

Figures 4 and 5 compare average LP algorithm performance
under the TLS and LS criteria, for both the correct dimension
of the noise subspace and its lower bound. As readily apparent,
the more elaborate computational nature of the TLS criterion
provides no performance benefits.

B. Estimation by Regularized Least Squares (LSr)

Another approach to solve Ax ≈ b is the regularized least
squares (LSr) [10] technique, whose solution is

xLSr = arg min
x

(
δ‖x‖2

F + ‖Ax − b‖2
F

)
, (45)

where δ is a positive constant. Equivalently, the LSr problem
solution may be recast as:

xLSr =
(
AHA + Iδ

)−1
AHb .
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Fig. 4. Average LP algorithm performance for the LS and TLS criteria as a
function of the NSR for the channel model in (39) using 10,000 received signal
samples. Correct noise subspace dimensions were used.
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Fig. 5. Average LP algorithm performance for the LS and TLS criteria as a
function of the NSR for the channel model in (39) using 10,000 received signal
samples. The noise subspace dimension lower bound was used.

Applying this to find AN yields:

ALSr
N = pN−1R

H
N−1

(
RN−1R

H
N−1 + Iδ

)−1
. (46)

Fig. 6 shows the LP algorithm performance under the LS and
LSr (δ = 10−4) solution criteria, using the lower bound noise
subspace dimensions. As one can notice, the model model order
mismatches have little influence on LSr performance.

However, this result is obtained at the expense of introducing
bias into AN as larger δ values are used. In fact, let R+

N−1 �
RH

N−1(RN−1R
H
N−1 + Iδ)−1 and λi, 0 ≤ i ≤ M + N − 1, be

the non-zero eigenvalues of RN−1. Then, it follows that [12]:

‖ALSr
N − AN‖2 ≤ ‖pN−1‖2 ‖R+

N−1 − R#
N−1‖2

≤ ‖pN−1‖2 max
λi

{
δ

λi(λ∗
i λi+δ) ,

1
δ

}
.

(47)
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Fig. 6. Average LP algorithm performance for the LS and LSr (δ = 10−4)
criteria as a function of NSR for the channel model in (39) using 10,000 received
signal samples.

This illustrated in Fig. 7 by depicting average LP algo-
rithm behaviour for a channel containing maximum-phase zeros
(H1(z) = 1 − 1.5z−1 and H2(z) = 1 − λz−1) that violate the
SOS identifiability condition at λ = 1.5.

1 1.5 2
−35

−25

−15

−5

lambda (λ)

M
S

E
 (

dB
)

LS − right dim.     
LS − lower bnd.     
LSr (δ=10−4)
LSr (δ=10−3)

Fig. 7. Average LP algorithm performance as a function of NSR using different
optimization criteria for estimating predictors employing 10,000 received signal
samples. The channel model has common maximum phase zeros at λ = 1.5.

In this case, LP algorithm performance under LSr criterion
degraded faster as λ → 1.5 for larger values of δ. Thus, the
value of δ establishes a compromise between variance and bias:
the larger its value, the more insensitive the algorithm becomes
to model mismatches, at the expense of introducing bias for ill-
conditioned channels.

VII. CONCLUSION

In this work, we examined the use of the TLS and LSr opti-
mization criteria to the estimation of the optimal predictors of
the LP algorithm. We verified through numerical simulations
that the TLS criterion provides neither performance nor robust-
ness improvement. The LSr criterion, however, comes forward

as a compromise solution allowing a balance between robust-
ness to model mismatches and bias through an adequate choice
of the δ regularization parameter.

REFERENCES

[1] W.A. Gardner, “A New Method of Channel Identification,” IEEE Trans-
actions on Communications, vol. 39, n. 6, p. 813-817, Juny 1991.

[2] D. Slock, “Blind fractionally-spaced equalization, perfect-reconstruction
filter-banks and multichannel linear prediction,” Proceedings of IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing 1994
vol. 4, p. 585-588, 1994.

[3] T. Kailath, A.H. Sayed, B. Hassibi, Linear Estimation, Prentice Hall,
Upper Saddle River, N.J., 2000.

[4] K. Abed-Mehraim, E. Moulines, P. Loubaton, “Prediction Error Method
for Second-Order Blind Identification,” IEEE Transactions on Signal Pro-
cessing, vol. 45, n. 3, p. 694-705, March 1997.

[5] D. Gesbert, P. Duhamel, “Unbiased Blind Adaptive Channel Identification
and Equalization,” IEEE Transactions on Signal Processing, vol. 48, n. 1,
p. 148-158, January 2000.

[6] S. van Huffel, J. Vandewalle The Total Least Squares Problem: Computa-
tional Aspects and Analysis Siam, Philadelphia, 1991.

[7] A.P. Liavas, P.A. Regalia “On the behavior of information theoretic criteria
for model order selection,” IEEE Transactions on Signal Processing, vol.
49, n. 8, p. 1689-1695, August 2001.

[8] J. Mannerkoski, V. Koivunen “Error Analysis of a Multi-step Prediction
Based Blind Equalizer,” Proceedings of the 1999 IEEE International Sym-
posium on Circuits and Systems - ISCAS 99, vol. 3, p. 86-89, 1999.

[9] E. Moulines, P. Duhamel, J.F. Cardoso, S. Mayrargue “Subspace Methods
for Blind Identification of Multichannel FIR Filters,” IEEE Transactions
on Signal Processing, vol. 43, n.2, p. 516-525, February 1995.

[10] A.N. Tikhonov “Regularization of Incorrectly Posed Problems,´´ Soviet
Mathematics, vol. 4, p. 1624-1627, 1963.

[11] A.H. Sayed, V. Nascimento, S. Chandrasekaran “Estimation and Control
with Bounded Data Uncertainties,´´ Linear Algebra and its Applications,
vol. 284, p. 259-306, November 1998.

[12] R.A. Horn, C.R. Johnson Matrix Analysis, Cambridge University Press,
1996.


