
IMAGE CODING AT VERY LOW BITRATES WITH REGULAR TRIANGULAR MESH

Cesar S. Barreto1, Gelson V. Mendonça1,2, and Eduardo A. B. da Silva1,2

Universidade Federal do Rio de Janeiro
1. PEE/COPPE 2. DEL/EE

Caixa Postal 68504, CEP 21945-970
Rio de Janeiro, Brazil

barreto, gelson, eduardo@lps.ufrj.br

ABSTRACT

A method to code images by approximating them by a tri-
angular mesh is presented. The coder encodes only the am-
plitudes of mesh nodes (triangle vertices) and the directions
and shapes of mesh triangles. The decoder obtains the pixel
amplitudes by interpolating the vertex amplitudes of the tri-
angles they belong to.

Since the used mesh is regular, the chosen size of the
mesh triangles influences the quality of the reconstructed
image. Using 16×8-pixel triangles, the compression ra-
tios that lead to the most competitive results are around
256:1 (very low bitrates). Results obtained hitherto are
very promising, even when compared with state-of-the-art
wavelet coders, thus motivating us in further explorations.

1. INTRODUCTION

Meshes are largely used to represent computer generated
synthetic images. One advantage of meshes is the continuity
of their elements: pixels in the mesh polygon boundaries are
common to at least two polygons, and undesirable block-
ing effects do not occur. Mesh coding is directly applied to
images without a domain transformation; this can be an ad-
vantage in video coding, because the same approach can be
used in intra-frame and difference-frame coding. Addition-
ally, meshes are well suited to motion estimation in video
sequences. Such image representation structures have al-
ready been studied in the past few years, giving interesting
results [1].

The proposed image coder approximates the images to
a regular triangular mesh. Initially, the amplitudes of mesh
nodes are chosen (as the mean value of the pixels around
the node). Then, the best direction (horizontal or vertical)
of triangles are chosen. After that, the diagonal arcs are

swapped where the error is reduced. Then, the amplitudes
of mesh nodes are optimized. Finally, the node amplitudes
are quantized and coded in bit planes as in [2] and flags
indicating arc directions and swappings are coded directly.

2. MESH REPRESENTATION

2.1. Mesh definition

To form a mesh, we first need to choose the type of polygon.
In computer graphics, triangles, quadrilaterals and hexagons
are used mostly. Since the triangle is the simplest polygon
and is the most flexible one in a tridimensional space (we
may change the position of only one vertex and it continues
to be a triangle), we have chosen it.

After that, we have to make another decision: either to
adapt the mesh to the image or to adapt the image to the
mesh. In other words, either the mesh may change the po-
sition of its nodes to approximate the edges of the image or
the image has its edges approximated by the fixed mesh.

The first choice seems to lead to better quality represen-
tation, but with higher coding cost. The second option, with
fixed mesh position, is image independent and easier to be
coded. We have chosen the second option. Therefore, we
will adapt each image to a regular fixed triangular mesh.

The next step is to define the triangle shape and size.
Thinking in coding optimization, we have chosen rectan-
gular isosceles triangles with 16-pixel bases and 8-pixel
heights, positioned to form a regular mesh, as shown in Fig-
ure 1(a).

2.2. Image approximation

The aim of our coder is to approximate images by a mesh
and, then, to code only the amplitudes of mesh nodes (tri-



angle vertices). Then, triangle sides or arcs are repositioned
to optimize image approximation.

After repositioning arcs, it is necessary to adjust node
amplitudes. After adjusting node amplitudes, it is a good
idea to iterate the process, repeating the arc swapping tests,
and the adjustment of node amplitudes. This must be carried
out until the required convergence is obtained. (Our tests
showed that at most three iterations are needed.)

2.3. Pixel interpolation

Each image pixel is interpolated from the three vertices of
the triangle containing it. The interpolation is linear, as
in [1], that is, mesh surfaces are formed by several flat tri-
angles. With such an approach, the resulting images are
blurred and dented. That is so because the triangles are a bit
large and in a few fixed positions.

2.4. Arc swapping

This limitation can be alleviated by swapping some trian-
gles from horizontal to vertical position, as shown in Fig-
ure 1(b). This swapping is carried out whenever it leads to
an improvement in the performance. Although this implies
in an overhead of informing which triangles were swapped,
there is an overall improvement in terms of rate×distortion.

Another way to improve the image quality is by swap-
ping “diagonal” arcs (the smaller sides of the triangles) from
the original±45 degree directions to “nearly horizontal” or
“nearly vertical” directions, as shown in Figure 1(c). Again,
this is done wherever this leads to a reduction in the error.
Also, it is necessary to inform which of the possible diago-
nal swaps were taken.

The direction or state of horizontal and vertical (H/V)
arcs (which define whether the triangles are horizontal or
vertical) sometimes prohibit diagonal swaps that would give
considerable improvement in error reduction. Therefore, in
these cases, we allow the swapping, and change the corre-
sponding H/V arc directions.

Once a diagonal swap is carried out, the swapping of
a number of surrounding arcs is prohibited. Therefore, it is
important to first analyse the effect of each arc swapping and
then execute those swaps in order of decreasing reduction of
the squared error.

2.5. Node optimization

Node amplitudes are initially chosen as the mean value of
neighboring pixels. After arc swapping, these values are

changed in order to minimize the squared error in the re-
gions affected by them. This is done by trial and error, in-
crementing and decrementing, separately, the initial value
of each node. Since a change in one node amplitude inter-
feres with the optimum value for neighboring nodes, this
process must be iterated. (In our tests, three iterations were
sufficient for the convergence.)

3. QUANTIZATION AND CODING

The value of node amplitudes and the state of arcs, swapped
or not, are now ready to be encoded. In the case of ampli-
tudes, it has been achieved using quantization by bit planes
followed by arithmetic encoding [3].

The states of arcs are directly arithmetic encoded. The
states of H/V arcs are encoded first, followed by the states
of diagonal arcs (taking into account the positions where
they have the permission to be swapped). Two models (his-
tograms) are used in each one of both types of arcs, to ex-
ploit tendencies of neighboring arcs and, consequently, im-
prove compression ratio.

3.1. Node interpolation

Instead of coding amplitudes of all nodes, we can substitute
some of them by the mean value of amplitudes of a pair
of nodes from the larger triangle (with four times its area)
that contains it, as depicted in Figure 2. This can be done
whenever the error introduced in node amplitudes is less
than a predefined threshold.

In such cases, we indicate it in a node map that is further
encoded. To exploit the frequent cases where two or more
adjacent triangles have their nodes interpolated, we use two
histograms to code this map. If at least one adjacent, and al-
ready scanned, triangle has been interpolated, the used his-
togram is different from the one used in the opposite case.

When the error is greater than the threshold, we quantize
and encode the node in bit planes.

3.2. Swapping thresholding

After node interpolation, flags used to indicate arc swap-
pings begin to produce a large overhead in the whole bit
stream.

Sometimes an arc swap does not considerably improve
the image quality, although it contributes to increase the bi-
trate. In these cases, the reduction in the error is not worth
the bits spent.



(a) (b) (c)

Fig. 1. (a) Regular triangular mesh structure, (b) H/V arc swapping, and (c) diagonal arc swapping.

Fig. 2. Mesh structure pointing nodes that are not encoded,
but are interpolated from node pairs of the larger triangle.

To solve this problem in a rate×distortion sense, we
have tested some values of swapping thresholds and have
taken only the swaps that produced such squared error re-
duction, at least.

4. EXPERIMENTAL RESULTS

Initially, we approximated the 512×512 Lena and Man-
drill images with the mesh. Then, we quantized using 4
bit planes for the node amplitudes, and arithmetic coded
them. After that, we tested combinations of node interpola-
tion and/or swapping thresholding. The obtained results are
presented in Tables 1 and 2, as follows:

1. 4-bit quantization, without node interpolation and
swapping thresholding;

2. 4-bit quantization, with a 8000 squared error reduc-
tion swapping threshold;

3. 4-bit quantization, with a 8000 squared error reduc-
tion for node interpolation and swapping thresholds;

4. 4-bit quantization, with a 15000 squared error reduc-
tion for node interpolation threshold and 10000 for

swapping threshold; and

5. 4-bit quantization, with a 20000 squared error reduc-
tion for node interpolation and swapping thresholds.

The images in part (a) of Figures 5 and 6 were mesh
coded and correspond to the second last line of Tables 1
and 2, respectively. The images in part (b) of the same
Figures were obtained using the wavelet-based SPIHT [4]
coder, at the same coding rates, for comparison.

5. CONCLUSIONS AND FUTURE WORKS

Although the coded images have undesirable artifacts, that
is because they are at very high compression ratios, nearly
256:1. With node interpolation and swapping threshold-
ing, the PSNR are considerably close to the results obtained
with wavelet codecs [4] for the same compression ratio, and
the visual quality are comparable (mesh artifacts frequently
seem to be less annoying than low bitrate wavelet ringing
artifacts).

For further improvements, we should continue the op-
timization of the coarse mesh based coding (for example,
differentially quantizing the nodes) and, then, hierarchically
divide the mesh, as presented in [1], to better represent im-
age high frequency details. Another planned future work
is to substitute the linear pixel interpolation by a non-linear
interpolation in order to smooth polygon edges, as used in
computer graphics shading.



Table 1. Coding Results for Lena Image with Triangular Mesh and SPIHT.
Node Node Swap Code Rate Mesh PSNR SPIHT PSNR
Bits Thr. Thr. (bytes) (bpp) (dB) (dB)

4 0 0 1416 0.0432 25.37 27.06
4 0 8000 1178 0.0359 25.20 26.47
4 8000 8000 1080 0.0330 25.16 26.21
4 15000 10000 1021 0.0311 25.02 25.96
4 20000 20000 914 0.0279 24.78 25.60

24

24.5

25

25.5

26

26.5

27

27.5

28

0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04 0.042 0.044

P
S

N
R

 (
dB

)

�

bit/pixel

RATE x DISTORTION

’Lena RxD’

Fig. 3. Rate×distortion results for Lena image with triangular mesh (inferior curve) and SPIHT (superior curve).

Table 2. Coding Results for Mandrill Image with Triangular Mesh and SPIHT.
Node Node Swap Code Rate Mesh PSNR SPIHT PSNR
Bits Thr. Thr. (bytes) (bpp) (dB) (dB)

4 0 0 1424 0.0435 20.06 20.22
4 0 8000 1227 0.0374 19.97 20.10
4 8000 8000 1182 0.0361 19.94 20.08
4 15000 10000 1070 0.0323 19.87 20.00
4 20000 20000 874 0.0263 19.74 19.86



19.6

19.8

20

20.2

20.4

0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04 0.042 0.044

P
S

N
R

 (
dB

)

�

bit/pixel

RATE x DISTORTION

’Mandrill RxD’

Fig. 4. Rate×distortion results for Mandrill image with triangular mesh (inferior curve) and SPIHT (superior curve).

(a) (b)

Fig. 5. Lena image coded at 0.0311 bpp with (a) triangular mesh (PSNR = 25.02 dB), and (b) SPIHT (PSNR = 25.96 dB).



(a) (b)

Fig. 6. Mandrill image coded at 0.0323 bpp with (a) triangular mesh (PSNR = 19.87 dB), and (b) SPIHT (PSNR = 20.00 dB).

6. REFERENCES

[1] P. Lechat, N. Laurent, and H. Sanson, “Scalable im-
age coding with fine granularity based on hierarchical
mesh,” inProc. VCIP, Jan. 1999.

[2] J. M. Shapiro, “Embedded image coding using ze-
rotrees of wavelets coefficients,”IEEE Transactions on
Signal Processing, vol. 41, pp. 3445–3462, Dec. 1993.

[3] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic
coding for data compression,”Commun. ACM, vol. 30,
pp. 520–540, June 1987.

[4] A. Said and W. A. Pearlman, “A new fast and efficient
image codec based on set partitioning in hierarchical
trees,”IEEE Trans. Circuits Syst. Video Technol., vol. 6,
pp. 243–250, June 1996.


