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Abstract – In this work, we propose an approach to the analysis of 
adaptive filtering criteria, based on an original formulation via least 
squares. This proposal, though based on some model considerations, 
possesses great generality and simplicity, encompassing many filtering 
structures and criteria. The approach is used on the study of three 
blind techniques (decision-directed, constant modulus and modified 
Sato) and of its relations to the supervised Wiener criterion. The 
method allows us to view adaptive techniques in a simple and unusual 
fashion and brought out theoretical insights on blind receivers and 
their relationship. The whole theoretical framework has a deep 
geometric appeal and highlights the relevance of separation conditions 
to static criteria analysis. 

 
I. INTRODUCTION  

 
HE last twenty years saw a great effort to put adaptive 
filtering theory on a solid basis. Criteria, algorithms and 

alternative filter structures were proposed and analyzed 
under different approaches, what has revealed astounding 
features and interconnections. However, as far as blind 
equalization or unsupervised adaptive filtering are 
concerned, a lot of aspects remain to be revealed. 

In the present paper, we propose a theoretical 
framework in which adaptive filtering and blind equalization 
criteria optimization are posed as a least squares problem. 
The approach provides a simple but quite general ground for 
analysis and comparison of equalization techniques and 
offers an original point of view about their essential aspects. 

The method is applied to the analysis of four well-
known optimization criteria: Wiener, decision-directed, 
modified Sato [1] and constant modulus [2]. Such analysis 
deals with the concept of linear separation conditions and 
leads us to reveal some strong connections between Wiener 
solutions and the different blind receivers. As a 
consequence, we also dare to extend the conjecture stated by 
Johnson et al. in [3], concerning a possible (and strong) link 
between the constant modulus and Wiener criteria. 

The paper is divided as follows: section II poses the 
necessary background on the general adaptive equalization 
problem. Section III is totally devoted to establish the 
proposed theoretical framework. The most important 
features issues from our approach are discussed in the 

following sections (IV, V and VI ). Finally the section VII 
summarizes the main conclusions. 

  
II. ADAPTIVE EQUALIZATION 

 
The goal of communication is to assure proper 

message interchange between a transmitter and a receiver, 
interconnected by a certain channel. A corresponding simple 
schema is sketched in Fig. 1. 

 

 
Fig. 1.  A Simple Communication System 

 
A relevant practical issue is that the channel may 

provoke intersymbol interference (IIS), which “spreads” the 
transmitted pulses, causing undesirable superposition and 
consequent performance degradation. The most usual 
counteraction to prevent such distortion from achieving 
intolerable levels is the introduction of a receiver filter 
named equalizer. Its input-output relation is, in a broad 
sense, expressed by: 

 
 y(n) = F[x(n), w(n)],  (1) 
 

where x(n) is a vector containing the N last channel output 
samples and w(n) is the parameter vector at the instant n. 
This is the general representation of a finite impulse 
response (FIR) structure.  

Linear filters are the most common choice for the 
equalizer role, so that F(.) become: 

 
 F[x(n), w(n)] = w(n)H.x(n),  (2) 
 
This is the equation of an hyperplane, to which we 

shall refer, for the sake of simplicity, as a plane.  
A crucial problem is how to adjust filter parameters 

in order to attain an optimal condition in some sense. From 
this matter arises adaptive filtering theory, based on several 

T
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adaptive criteria, which can be divided into two classes: 
supervised  and unsupervised. 

To the first class belongs the cornerstone of the 
whole theory: the Wiener criterion (WIC), defined by the 
following mean square error (MSE) cost function: 

 
 JW = E{[s(n-d) – y(n)]2}, (3) 
 

where d is the equalization delay. If the delay is given a 
priori, this function has a single minimum, called Wiener 
solution. However, if we consider the delay as a degree of 
freedom, various Wiener solutions will contribute to the 
function multimodality. 

Many criteria belong to the second class. Three are of 
particular interest here, namely, the decision-directed 
criterion (DDC), the modified Sato criterion (MSC) and the 
constant modulus criterion (CMC). Their cost functions are 
respectively given by [4]: 

 
 JDD = E{[dec[y(n)] – y(n)]2}, (4) 
 

where dec (.) is a quantizer mapping,  
 
 JMSC = E{[R1 - |y(n)| ]2}, (5) 
 

where R1 is defined by: 
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2
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and 
 
 JCM = E{[R2 - |y(n)|2 ]2}, (7) 
 

with R2 defined as: 
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The last two decades have seen a great deal of work 

that launched and scrutinized the foundations of blind 
equalization theory. The works of Lucky, Sato, Godard and 
many others brought out new criteria, which have been the 
subject of important theoretical analysis [1] –[5]. A 
remarkable need arose: to understand not only the criteria 
per se, but also their interconnections. This is certainly one 
field of considerable interest nowadays and we think that it 
holds the key to important insights. The contribution of the 
present work comes in this sense, although many opened 
questions remain to be investigated. 

 

III. CRITERIA OPTIMIZATION AS A LEAST SQUARES 
PROBLEM 

 
Most communication channels are modeled as a FIR 

filter. This gives rise to a great number of interesting 
properties, many of which have been described in several 
works concerning the “equalization as a classification task” 
framework [6]. 

Now, if the transmitted signal s(n) belongs to a finite 
alphabet and the channel is a FIR filter, it is straightforward 
that x(n) be constrained to a finite set of possible values. It 
holds: 

 
 x(n) = Φ[s(n-a1), s(n -a2), …, s(n-ap)]  (9) 
 

where p is a memory index. This condition will be always 
assumed in the sequel. The set of possible p-uples is finite 
due to s(n) character. Besides, if x(n) has a limited repertoire 
of values, the same property holds for the vector:  
x(n) = [x(n) x(n-1) … x(n-k+1)]T. 

An example can clarify these points. 
  

Example 1 
 
Suppose that s(n) is binary (+1 / -1) and i.i.d. 

(independent and identically distributed). The channel is 
linear, noiseless and has an impulse response given by 
 h(n) = δ(n) + 0.6δ(n-1). Let us assume a two-coefficient 
equalizer, what requires a two-element input vector x(n) = 
[x(n) x(n-1)]. From this information, we build Table 1. 

The channel produces eight possible vectors, each 
one associated to a triple of transmitted samples. The 
distribution of these points is plotted in Fig. 2.  

 
TABLE 1 

 POSSIBLE  INPUT COMBINATIONS 
 x(n) x(n-1) s(n) s(n-1) s(n-2) 
1.6 1.6 1 1 1 
1.6 0.4 1 1 -1 
0.4 -0.4 1 -1 1 
0.4 -1.6 1 -1 -1 
-0.4 1.6 -1 1 1 
-0.4 0.4 -1 1 -1 
-1.6 -0.4 -1 -1 1 
-1.6 -1.6 -1 -1 -1 
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Fig. 2. Possible Input Vectors 

 
We now return to the theoretical discussion to access 

how the resulting pattern of the mentioned distribution will 
determine the equalizer performance.  

Indeed, many criteria to be used in adaptive filtering 
(supervised or not) take the following form: 

 
 J = E{[k(n) – G(w, x)]2}, (10) 
 

as can be promptly confirmed by an inspection of equations 
(3, 4, 5, 7). In (10), k(n) contains information about or an 
estimate of the transmitted signal and G(.) is related to the 
filtering structure. 

From our previous discussion about the input vector, 
we conclude that, for a given w, G(w, x) is a discrete 
random variable. We may thus rewrite (10):  

 

 [ ]∑
=

−=
X

1i

2
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The operator prob(.) simply stands for probability of 

occurrence and ki is a value associated to xi. So, in (11) we 
have a general model for equalization criteria in our working 
conditions. In this article, we deal exclusively with 
equiprobable and i.i.d. sources. This allows us to rewrite 
(11) as: 
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In (12) holds the crucial feature of our proposal. If 

the cost functions in adaptive filtering can be expressed as in 
(12), it means that they can be view as a least squares 
problem. Then, from now we use the expression least 
squares approach (LSA). Clearly, the LSA must not be 
confused with the well-established theory of least squares 
algorithms . They are essentially different and deal with 
distinct aspects of the filtering problem.  

The cost function model (12) has a great degree of 
generality. It encompasses problems so diverse as, for 
instance, linear equalizer optimization via CMC or neural 
network optimization via WIC. In all the cases, all we need 
to know about the structure and the criterion are the 
corresponding values of ki and G(.). 

It is our belief that this simplicity can be very useful 
to analyze the “criterion-in-itself” as well as the liaisons 
between different techniques. So, let us see how each 
criterion fits the general LSA model.  

 
Wiener 

Corresponding settings are ki = si and G(w, xi) = F(w, 
xi). 
 
Modified Sato 

The choices must be k i = R and G(w, xi) = | F(w, xi) |. 
 

CM 
To obtain the CM criterion, it is necessary to pose  

ki = R2 and G(w, xi) = | F(w, xi) |
2.  

 
DD 

The DD criterion arises when one makes  
ki = dec[F(w, x)] and G(w, xi) = F(w, xi). 

 
Discussion 

 
The original aim of equalization is represented by the 

zero-forcing condition (ZFC) that, in the LSA formulation, 
would be: 

 
  F(w, xi) = s i for all i (13) 
 
WIC is the only criterion that can be straightly 

associated to this goal (we consider no source correlation). 
However, we do not wish to create a wrong notion that other 
criteria cannot achieve a ZFC. It is possible, but always 
through “indirect” ways. 

A close study of the “choices” of ki and G(.) in each 
one of the previous criteria reveals that the blind techniques 
use two basic expedients: i-a function G(.) different of F(.) 
and ki equal to a constant (MSC, CMC) or ii- G(.) = F(.) and 
ki as a nonlinear estimate of si (DDC). In both cases, they 
are using some kind of artifice to obtain the equalizer 
without the knowledge of the transmitted signal.  

 
 

IV. RELATIONSHIP BETWEEN WIENER AND DD 
 

In order to well pose the mentioned relationship, the 
first two subsections, IV.A and IV.B, recalls some useful 
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results, while IV.C contains the new analytical work and the 
obtained results. From now on we assume that the equalizer 
is a linear filter and that the transmitted signal is zero-mean 
and binary.  

 
A. Planes And Linear Separation 

 
As shown in (2), linear filters have an input-output 

relationship identical to the equation of a plane. Besides it is 
easily shown that this plane always crosses the origin. 

From (2), it comes that the linear equalizer structure 
can only perform linear separation. In fact, suppose that we 
transmit a series of +1 and –1 pulses. The quantizer will 
map the equalizer output onto +1 if it is positive and onto –1 
if it is negative. The equation wH.x = 0 establishes a decision 
boundary X0 in the equalizer parameters space. Two regions 
could be formed: X+, in which y(n) > 0 and X-, in which 
y(n) < 0. Every point of X+ will be reconstructed as a +1 
pulse, and every point of X- as -1.  

It is important to remark that there are infinite 
possible values of w that lead to the same regions. These 
solutions differ only by a gain, which is automatically 
adjusted by all the presented criteria. 

 
B. Equalization Delay Influence 

 
Equalization delay influence is an aspect present in 

several works on the “equalization as a classification task” 
framework. It is also important in the context of the LSA, as 
we intend to show.  

Let us turn back to the model presented in example 1. 
Suppose that we wish to employ the Wiener criterion. One 
immediate question arises: which equalization delay should 
be chosen? This question may sound, at a first sight, quite 
pointless. However, if we carefully consider the results in 
Table 1, its importance becomes patent. 

Suppose that we chose d = 0. This means that our 
values of s i in (12) will be given by the column s(n) in Table 
1. In Fig. 3, we label the points xi, presented in Fig. 2, 
according to their corresponding values of si. We also plot 
the regions X-,  X+ and X0 for the Wiener solution. Their 
parameters are set to make y(n) as close as possible to +1 in 
the X+ points and to –1 in the X- points. 

 This delay configuration allows linear separation and 
it is not surprising at all that the Wiener solution is 
associated to a linear separation condition (LSC). It is 
reasonable to state that the Wiener solution will produce a 
LSC when the last is attaina ble, as previously demonstrated 
in [7]. 
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Fig. 3. Situation for si = s(n) 

 
This approach helps us to see why, in this model, it is 

not possible to obtain perfect (zero-forcing) equalization. 
The eight points (xi, s i) are not coplanar, what accounts for a 
non-zero residual MSE. Perhaps other structures can achieve 
this goal but not a linear filter. Finally, this solution 
accounts for a residual error of 0.0870. 

 Let us now study the second possibility, that is si = 
s(n-1). The Fig. 4 brings the labeled points and the Wiener 
solution boundary. Again we have a LSC, and the residual 
error is 0.2417. This reveals that this point distribution was 
less favorable than the previous one, what is apparent from 
the figure. 

We finally consider the last possibility, si = s(n-2). In 
Fig. 5, we have the labeled points and the Wiener boundary. 
In this case, we have not a possible LSC . As expected, the 
minimum has a large residual error: 0.6713. This illustrates 
the connection between good classification and the least 
squares problem inherent to adaptive filtering. 

After this case study, we are ready to search for 
relations between the DD and Wiener criteria. We will 
consider, without loss of generality, that the signal assumes 
values +1 and –1. 
 
C. Linear Separation and Minima  Analysis 

 
As seen in section III, DD and Wiener functions have 

distinct kis. Two crucial questions are: can the costs 
coincide?  And how? 

A natural procedure is to look for situations where  
ki = dec[F( w, xi)] and ki = s i coincide for every possible 
value of i. In these situations, the cost associated to a 
solution w would be the same. Since we are working with 
blind criteria, it is also acceptable to have ki = -s i.  

Now let us pose two important results as the basis of 
our subsequent analysis. 
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Fig. 4. Situation for si = s(n -1) 

 
Result 1: If, for a given w, dec[F(w, xi)] = s i or  

dec[F(w, xi)] = -s i, for every possible i, then Jw = JDD at this 
point. The proof comes from immediate substitution in (12). 

 
 Result 2: The conditions dec[F(w, x)] = s i and 

 dec[F(w, x)] = -si, for every possible I, only hold if w leads 
to a LSC. 

As dec[F(w, x)] = +1 in X+ and dec[F(w, x)] = -1 in 
X-, it is imperative that the distinctly labeled points fall in 
distinct regions. As the regions are divided by a linear 
boundary X0, a LSC is necessary. 
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Fig. 5. Situation for si = s(n -2) 

 
Result 3: If w leads to a LSC, this condition will also 

hold for a vicinity in the parameter space. 
Notice that y(n) = wH.x = xH.w. Given a certain x, 

y(n) is a function whose domain is the parameter space. The 
well-known continuity of a plane assures us that, for every 
w, there will be a vicinity in which no change of y(n) sign 
shall happen. We conclude the proof by taking the most 
restrictive region among all. 

From results 1, 2 and 3 a central statement follows: 
 

Every Wiener minimum that leads to a LSC will also 
be a DD minimum and so will, consequently, its 
symmetrical. 

 
This suggests Wiener minimum separation in two 

classes: the ones who lead to a LSC and the ones who do 
not. We will refer to the first class as LSC minima and to the 
second as NLSC minima. 

No coincidence can be guaranteed between a NLSC 
minimum and a DD minimum. Indeed, the rule is that 
equality shall not occur. This explains the notion of 
spurious minimum, that is, a minimum that has no 
connection with a Wiener receiver. They simply cannot be 
related to a LSC. 

Notice another interesting aspect: the DD cost 
function will have LSC regions of equality to the Wiener 
cost function. This allows us to think about polytopes in the 
context of LSA. 

Another point is that for multilevel modulations, 
there shall occur multiple frontiers. However, many results 
can be extended to this more general case. 

 
V. RELATIONSHIP BETWEEN CM CRITERION AND 

WIENER CRITERION 
 
Until now, the studied criteria had a G(.) that was a 

plane or, at least, “plane-like”. This is not the case when the 
CMC is in question. Its G(.) has a parabolic shape, what is 
a remarkable difference. 

The point is: until now, we were using “plane-like” 
G(.) functions to optimize the parameters of a plane (the 
linear filter). With the CMC, we use a parabolic G(.) 
function to obtain the parameters of a plane. This accounts 
for the well-known difference between a CMC minimum 
and a close Wiener solution. 

To probe further, we will briefly turn to another 
criterion: the MSC. It has ki = R and G(w, x) = |F(w, x)|. 
Without loss of generality, let us consider R = 1. In this 
case, ki = 1 and the function to be optimized is the modulus 
of a plane, to which we will refer as a V-plane.  

 
Result 4: The WIC and MSC costs do coincide when 

evaluated at a LSC Wiener minimum. 
Considering a LSC, we have the regions X+ and X-, 

created by the Wiener minimum. In the X+ region, both G(.) 
functions coincide and so do the ki. In the X- region, GMSC(.) 
= -GWIC. However, kiMSC = -kiWIC, what preserves the error 
value. This concludes the proof.  

From results 3 and 4, we see that the same minima 
division holds for the MSC, what was expected. Now we 
will try to relate these results to the CMC. 
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We studied the MSC because it is, in form, very 
close to the CMC. Their difference lies primarily on the 
function G(.). If parameter change can be related to a 
deformation, then maybe we can find a direct relationship 
between WIC and CMC minima. 

 
VI. CONJECTURING ON WIENER / CMC RELATION 

 
This is a section devoted to conjectures on the 

relation between WIC and CMC minima. Of course, we will 
formulate them by means of the LSA. 

The first conjecture we state is: every CMC minimum 
is close to a LSC Wiener minimum. 

We dare to affirm such a thing inspired by a 
conjecture raised by Johnson et al. in [3], proposed in the 
context of fractionally -spaced filtering. Their conjecture is 
that the CMC minima are always close to the best possible 
Wiener solutions. In other words, the CMC “chooses the 
best delays”.  

The results presented by Li et al. [5] also were 
encouraging. In their work, blind criteria minima are also 
divided in two classes: length- and cost-dependent. So a last 
question to be opened as a perspective of further studies 
could be: Is there some kind of correspondence between 
those two classes and the LSC and NLSC minima? 

 
VII. CONCLUSIONS 

 
The main result present in this work was the 

establishment of a LSA to the analysis of adaptive 
equalization criteria under a certain system model. The 
approach is quite flexible, encompassing different structures 
and criteria. It provides a rather simple view on the 
techniques and the problem as a whole. 

The study of the DDC under the LSA gave rise to 
some interesting results concerning separation and cost 
function structure and also provided a solid basis to relate 
these minima to the WIC minima also under the separation 
concept. 

The study of the CMC minima allowed us to 
establish some connection between these and WIC minima, 
using the MSC as a liason.  

At last, we forged a new conjecture about the 
connection CMC-WIC based on a previous one, made by 
Johnson et al. in [3]. Subsequent work on the LSA may 
clarify this proposition bases. 
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