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Abstract – The first objective of this work is to analyze the suitability 
of a framework based on the use of genetic algorithms (GAs) to 
optimize blind equalization cost functions. This effort is motivated by 
advances in the field of GAs, as well as by recent breakthroughs in 
the study of blind techniques and their relations to the Wiener 
criterion. The second objective is to present and test a new proposal 
for blind channel identification. The method, whose success depends 
highly on the equalizer quality, was implemented through the 
established framework. The obtained results show that GAs are a 
valuable tool that can decisively aid filter adaptation and also 
demonstrate the efficiency  of the identification proposal. 
 

I. INTRODUCTION 
 

n the last decades, various works started to scrutinize the 
foundations of blind adaptive filtering theory. They can 

be generally divided in three classes: new proposals [1]; 
criteria / algorithms theoretical analysis [2, 3]; and 
investigations on the relation between different techniques 
[4]. 

Several conclusions were drawn from this great 
intellectual effort. Among them, we highlight here an 
important one: there is a strong correspondence between 
blind criteria minima and certain Wiener solutions [3, 4]. 
Since the Wiener filter formulation expresses in a 
straightforward manner the ideal of equalization, it 
provides a very natural basis for comparison. 

So, if one can obtain good estimates of the best 
Wiener receivers without the need of supervision¸ then a 
powerful ground for equalizer adaptation will be 
established. However, this requires effective search 
methods for blind cost functions, since they possess 
different minimum points. 

Following recent trends in the constant modulus 
(CM) criterion analysis, we consider that a good search 
method can provide good global convergence rates, with 
corresponding low value of MSE, without a supervision 
procedure. We chose a genetic algorithm (GA) to perform 
this task, inspired by its efficiency and by important 
advances and new conceptions in the field. We also 
propose a novel equalization-based method for blind 

channel identification, which is also robust to the unknown 
channel order.  

The paper is divided as follows: section 2 brings an 
overview on adaptive equalization to well pose the main 
concepts to be used in the sequel, including the classical 
CM criterion. In section 3, we propose the new channel 
identification method, to further implemented in a 
framework based on the use of GAs. Then  section 4 
discusses the genetic algorithm principles and its 
implementation issues. Section 5 brings the results while 
section 6 states the conclusion and final remarks. 

 
II. BACKGROUND ON ADAPTIVE EQUALIZATION 

 
The goal of communications engineering is to 

assure proper message interchange between transmitter and 
receiver, by means of a given channel. By nature, such 
channel generally brings additive noise and distortion. To 
prevent unacceptable levels of distortion, one may employ 
an equalizer, a countermeasure device that filters the 
received signal, in order to recover the desired information. 
After these preliminary statements, a simple system model 
is represented by Fig. 1. 

 
Fig. 1. A Simple Communication System Model 

 
So, it becomes clear that the main objective of 

equalization is to provide an output signal mathematically 
represented by: 
 y(n) = K.s(n-d) (1) 
 

This establishes the so-called zero-forcing (ZF) 
condition, where K is a gain factor and d is the 
equalization delay. In most practical applications, linear 
filters play the equalizer role, so that: 
 
 y(n) = wT.x(n)  (2) 

I
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where w is the equalizer parameter vector and x(n) = [x(n) 
x(n-1) ... x(n-L+1)]T, where L is the equalizer length. 

Then a crucial question remains: how to adjust the 
equalizer parameters w in order to obtain a condition as 
close as possible to (1)? If it is possible to count on a 
priori knowledge of the channel impulse response, the 
mathematical becomes rather simple. If not, a suitable 
optimization criterion must be employed for w 
determination. A very important one, that does not require 
channel information, is the Wiener criterion : 
 
 JW = E{ [s(n-d) – y(n)]2}  (3) 
 

The major drawback is now the need of s(n) 
knowledge, since it is generally unavailable in 
communications applications. 

The usual optimization procedure is to minimize (3) 
with respect to w, for a given value of d. So the criterion is 
unimodal and the well-known result is called Wiener 
solution.  But it is worth noting that, for different values of  
d, we have distinct Wiener solution performances. Hence 
the Wiener criterion may be viewed as a multimodal one if 
the equalization delay is also considered as an optimization 
variable. 

On the other hand, if s(n) is not available, we turn to 
the so-called blind or non-supervised criteria. Among 
them, the constant modulus (CM) criterion has received a 
considerable attention since its first proposition by Godard 
in 1980 [1]. Its cost function is expressed by: 
 
 JCM = E[(|y(n)|2 – R2)

2]  (4)  
 
where R2 is defined by: 
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Recent works have shown that the minima of (4) are 

strongly related with some of the Wiener solutions, for a 
certain set of delays. Inspired by [3, 4], we conjecture that 
this set may be the best possible in the MSE sense. This 
motivates the application of efficient search methods in 
(4), since succeeding in this task would allow the 
attainment of good Wiener solutions without supervision. 
Implementation particularities will be properly discussed 
in section 4. 
 

 

III. A METHOD FOR BLIND CHANNEL 

IDENTIFICATION 
 

Another important issue in communications is the 
identification of the channel impulse response. This 
procedure has many practical motivations, e.g., modeling 
and equalizers design; MLSE equalizer implementation; 
etc. Usually, identification is carried out in a supervised 
way, which cannot be practical, as previously mentioned.  

So, blind techniques were also proposed in the 
literature. There are different possible approaches, based 
on cumulant analysis (e. g. [6]), or on signal recovery after 
equalization (e. g. [5]), to mention a few. 

We propose a new equalization-based approach to 
blind identification, founded on the convolution 
commutative property. First of all, let us define h(n) and 
w(n) as channel and equalizer impulse responses, 
respectively. We may thus write: 
 
 y(n) = s(n)* h(n)*w(n)  (6) 
 

For the sake of illustration, we can imagine a two-
coefficient channel and a 20-tap equalizer. It is quite 
reasonable to think that, by means of a proper adaptive 
algorithm, we will be close to the ZF condition. Now, if we 
switch channel and equalizer positions, the relation 
between s(n) and y(n) will not change. But now we have a 
20-tap channel properly equalized by a two-tap (!) filter. 
The procedure is represented in Fig. 2. 

 
Fig. 2. Identification Process 
 

So, the proposed procedure to identify a certain 
channel (F1) is the following: 
 
1)  Choose a “long-length”  equalizer (F2) and a proper 
blind adaptive search method to adjust this filter, in order 
to ensure a condition rather close to the ZF. 
 
2)   Assume the obtained F2 is a “pseudo-channel”  (F3) 
and perform an offline analysis to derive its best equalizer 
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(F4) in the Wiener sense, comparing every possible delay, 
given a channel order. 
 
3) The best Wiener solution (F4) will be the best 
estimation of F1. The crucial point is that the F4 equalizer 
is rather close to the ZF condition, despite its short length, 
since it comes from a simple change of order in the (F1 + 
F2) chain. This concludes the procedure. 
 
 a certain channel (F1). We choose a large equalizer and a 
good blind adaptive search method to adjust this filter (F2), 
what will ensure a condition rather close to the ZF. Now, 
imagine that we face F2 as a “channel” (F3). We can easily 
perform an offline analysis that will give us the best 
equalizers in the Wiener sense, for every possible delay, 
given a certain order. From these, we pick the best (F4). If  
F1 + F2 gave us a good condition, it can also be attained 
by F3 + F4. As F3 is supposed to be larger than F4, the last 
will probably be rather close to F1, for the Wiener criterion 
has much to do with the idea of approximating the ZF 
condition (specially if the source is white). This concludes 
the estimation process. 

The genetic CM equalizer has been chosen to obtain 
F2. For this reason, some background on this method will 
be posed in sequel. 
 

IV. GENETIC ALGORITHMS 
 

The basic ideas behind GA were first proposed by J. 
Holland [7], in 1975, and have been widely used in the 
most different applications since then. 

The original GA works as follows: a set of solutions 
is generated and coded, usually in a string, named 
chromosome or individual. The set of individuals is said to 
be a population.  For a given number of iterations – called 
generations – the individuals on the population go through 
crossover (new individuals are generated using 
information from two former ones), mutation (individuals 
are slightly changed), evaluation (to each individual is 
assigned a fitness function, supposed to measure its 
quality) and selection (individuals of the population are 
selected for the next generation, giving priority to the most 
adapted ones). 

The analogy with nature comes clearly, since 
according to Darwin’s classical studies, individuals are 
generated via reproduction (crossover + mutation). The 
generated individuals compete amongst themselves and the 
best-adapted ones (evaluation) are more likely to 
reproduce and pass their genetic information to the next 
generation (selection). 

The rationale behind GA is in the fact that nature 
was able to generate, via evolution, a wide range of 

different species, which have adapted to very different 
conditions. One expects that the individuals in the GA will 
also be able to evolve, adapting to the best solutions of the 
search space.  

Mathematically, GA is a stochastic optimization 
method that does not need any information on the problem 
but one measure of quality of solutions. Though strongly 
relying on randomness, GA is quite more sophisticated 
than random search. Indeed, Holland argues that the key to 
understanding why GA works is in its implicit parallelism. 
According to Holland [7], when evaluating N individuals 
in a generation, a GA is implicitly working with a much 
higher number of solutions (N3, according to his estimates) 
what makes the search much more effective. 

Though very efficient in exploring the search space, 
GA’s are prone to premature convergence to one optimum. 
Actually, the maintenance of diversity in the population is 
one of the most important questions in GA studies. 
Mutation usually plays an important role, since it always 
introduce new information to the population. 

Other methods that try to maintain diversity have 
also been proposed. For instance, some authors have 
proposed algorithms that introduce randomly generated 
individuals into the population. This can be done at every 
generation or when the diversity was considered to reach 
low levels. This procedure is known as immigration. 

The rates of mutation and/or immigration must take 
into account that very high values can transform the 
algorithm into a simple random search, while very low 
rates can lead to a convergence to local optima, which are 
sometimes very distant from the global optimum. 

In some cases, it may be very hard to match this 
compromise. In particular, search spaces with very strong 
multimodal characteristics are examples of rather difficult 
scenarios for classical GAs. For these cases, the literature 
has proposed alternative methods to obtain a wide 
exploration of the search space. 

 These strategies are named Niching Methods [8] 
and are based on the idea that, in an ecosystem, not all 
species compete amongst themselves. Some species may 
not interfere with others and some may even help the 
proliferation of others. Actually, each species has a niche 
and the individuals of that specie will compete only against 
themselves and against individuals of other species that 
share the same niche. Some of the most famous Niching 
methods are Fitness Sharing [9] and Clearing [10]. 

Fitness Sharing is probably the best-known niching 
method available in the literature. In this method, a 
measure of distance is made between each individual and 
all other individuals in the population. The fitness of each 
individual is divided by the number of individuals that are 
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relatively close to it. The idea is to privilege individuals 
that explore new regions of the search space.   

The main difficulty in Fitness Sharing is to 
determine what is “relatively”  close in an unknown 
problem and the fact that very good individuals can be lost 
due to closeness to other individuals. It could be better to 
reduce the fitness of the other individuals but maintain the 
fitness of the best one. This is the idea of Clearing. 

In the original Clearing Method [10], the best 
individuals in each niche are preserved and the others have 
the fitness reduced to zero. In this way, the presence of 
very close individuals is discouraged but no harm is done 
to the best individuals. Moreover, Petrowski argues that 
Clearing procedure has a lower complexity and is directly 
compatible with elitist strategies, where the best individual 
per niche is preserved from one generation to another. 
However, there is still the difficulty of determining the 
radius of the niche. 

Proposed Algorithm 
 

The GA to be proposed here works in the following 
way: a population is generated and goes through the 
classical operators of crossover and mutation. A Clearing 
Method Analysis precedes the selection phase.  

The Clearing maintains the fitness of the best 
individual per niche and introduces random generated 
individuals (immigration) to substitute the other ones.  

The k best individuals per niche are preserved in an 
elitist procedure. The difficulty of determining the niches 
is overcome by using an intrinsic characteristic of the 
problem: it is observed that the best equalizers for a 
channel usually contain a predominant coefficient. These 
coefficients are different for each one of the best minima. 
Therefore, the idea is to assume that solutions that have the 
predominant coefficient in the same position belong to the 
same niche. 

The use of “the predominant coefficient”  as the 
niche definition criterion fits very properly our application 
with a quite low computational effort. This would be not at 
all the case if we had to calculate every distance by using, 
for instance, the norms amongst all the individuals. 

    
V. RESULTS 

 
We chose two channels to test the proposed 

equalization framework. One (C1) is a non-minimum 
phase channel with coefficients [1 0.4 0.9 1.4] and the 
other (C2) is also a non-minimum phase channel with 
coefficients  
[1 1.2 –0.3 0.8]. 

Tab. 1 contains the GA settings for the simulations. 
The population size, mutation and crossover parameters 

are rather standard and have been used for all simulations. 
This is a very important information since it shows that the 
algorithm is robust and we don’t have to set the parameters 
for each new situation. 

The Clearing Method parameters were also kept the 
same during the whole set of tests. We decided to preserve 
only the best individual of each niche (k=1) and the 
number of niches was, in each case, the number of 
parameters. 

TABLE 1 
G. A. SETTINGS 

Parameter Value 
Standard GA 

Population Size, Nind 30 
Nb. of Crossovers per Gen. 10 
Mutation probability, pm 0.1 

Stopping Criterium 2000 Generations 
Clearing Method 

Nb. of ind. preserved per 
niche, k 

1 

Number of niches, q Equalizer order  
 

The first test is carried out in a relatively small 
search space. The C1 channel and a five-parameter 
equalizer are considered. This filter order is not sufficient 
to achieve a good open-eye condition, but will fit nicely 
our requirements in showing the effectiveness of the GA. 

Tab. 2 has been built from the outcomes of 50 
simulations. It reveals that the method has always provided 
a solution rather close to the global Wiener minimum, 
what clearly indicates a very good performance. We also 
carried out a test with a 10 individuals population. In this 
case, global convergence was achieved in 82% of the cases 
and the mean residual error was  0.1905, close to the 
lowest possible cost. We conclude that a good performance 
can also be obtained with a lower computational burden. 
 

TABLE 2 
C1 + 5 COEF. EQUALIZER 

Solution Residual 
MSE 

Freq. 

[0.2183   -0.1873   -0.0596   -0.2804    
0.5892] 

0.1751 100% 

Mean Residual MSE: 0.1751 
 

Let us now turn to a larger and more complex 
search space with the C1 channel and an eight-coefficient 
equalizer. In this case, we still have not a significant IIS 
reduction, since there are more minima and they have a 
higher degree of uniformity. These features account for a 
more difficult job. 
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Tab. 3 brings the corresponding results. We notice 
that convergence to good minima was predominant, with a 
remarkable global convergence rate. The inverse relation 
between MSE and frequency marks the coherence of the 
method and proves its distance from any kind of random 
search. The mean residual MSE indicates that it is 
reasonable to expect a “second minimum” performance in 
this case. 

The last simulated scenario is formed by the 
combination of C2 channel with a seven-coefficient 
equalizer. This filter order is enough to provide a condition 
close to the ZF one. Tab. 4 brings the corresponding 
results. Again, we have a very good global convergence 
rate and a good proportion between residual MSE and 
frequency. This reveals, once more, the method efficiency. 
The mean residual MSE is lower than the MSE achieved 
by the second minimum. This provides a solid base for 
good performance expectation. 

This concludes our investigations on equalization. 
The method revealed itself a powerful search tool, from 
which is acceptable to expect an average performance 
close to the best possible one. The proposed GA showed 
great efficiency, what is clear from Tabs. 2, 3 and 4, whose 
MSE / frequency relation is quite noticeable. 
 

TABLE 3 
C1 + 8-COEF. EQUALIZER 

Solution Residual 
MSE 

Freq. 

[0.1975   -0.1420   -0.1180   -0.2265    
0.5200    0.1146   -0.1132    0.0848] 

0.1293 48% 

[-0.1191    0.0528   -0.0234    0.2825   
-0.2372   -0.0465   -0.3045    0.6145] 

0.1397 22% 

[-0.0235    0.2256   -0.1475   -0.1057   
-0.2763    0.5536    0.1190   -0.0666] 

0.1445 12% 

[-0.0237   -0.0247    0.2331   -0.1408   
-0.0860   -0.3011    0.5466    0.0906] 

0.1533 10% 

[-0.1350   -0.1433    0.3712    0.1986   
-0.1456    0.1708   -0.1339    0.0572] 

0.1890 4% 

[-0.0246   -0.1117   -0.1464    0.3829    
0.1610   -0.1226    0.1730   -0.1008] 

0.1951 4% 

Mean Residual MSE:  0.1408 
 

Our attention will now be concentrated on the 
identification proposal (section 3). Its test is not 
necessarily related to the previously exposed equalization 
framework. However, to put things on that basis gives us a 
somewhat practical view on its capabilities. 

 
 
 
 

TABLE 4 
 C2 + 7-COEF. EQUALIZER 

Solution Residual 
MSE 

Freq. 

[-0.0837  0.1543  -0.2303  0.4058  
0.2894  -0.0522   -0.1528] 

0.0312 48% 

[0.1422  -0.2480  0.3825  0.3070   
-0.0390  -0.1451  -0.0419] 

0.0458 40% 

[-0.2277  0.4120  0.3456  -0.0667    
         -0.1660   -0.0536    0.0615] 

0.0917 8% 

[0.0400  -0.0851  0.1579  -0.2249    
0.3744  0.2651  -0.0714] 

0.0918 2% 

[-0.0373  0.0467  -0.0735  0.1732   
-0.2449  0.3592  0.2547] 

0.1022 2% 

Mean Residual MSE:  0.0445 
 
We chose the last scenario (C2 + seven-coefficient 

equalizer) to test the method, since the corresponding 
minima are closer to the ZF solutions. First, we supposed 
that channel order was a priori known. Tab. 5 shows the 
estimates obtained from each minimum present in Tab. 4 
and also brings an error index, defined by: 
 
 Error = ||h – hest|| (7) 

 
which evaluates the difference between the estimate and 
the real channel vector.  

TABLE 5 
 IDENTIFICATION RESULTS 

Estimate Error 
(Norm) 

Freq. 

[0.9486    1.2824   -0.3365    0.6844] 0.1553 48% 
[0.8637    1.2860   -0.4421    0.7265] 0.2271 40% 
[0.6690    1.4515   -0.5551    0.8458] 0.4899 8% 
[1.1185    1.3836   -0.4100    0.3942] 0.4739 2% 
[1.1842    1.2996   -0.6337    0.3420] 0.6041 2% 
 

It is clear that the estimate quality tends to improve 
when good equalizers are employed. Notice that the 
minimum error is determined by structural limitations, and 
not by some limitation inherent to the method. By taking, 
for instance, the best Wiener solution for a 15-tap 
equalizer, the estimate would be hest = [0.9944 1.2052 -
0.3027 0.7933] and the error index, 0.0105. This proves 
the efficiency of the proposal. 

The next step is to test an order estimation strategy, 
keeping the same scenario. This expedient is extremely 
desirable, for such knowledge is hardly at hand in a 
practical application.  

 Our idea is to improve F4 order while monitoring 
its residual MSE. We assume that a significant error 
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reduction will take place in the transition to a good order 
estimate. 

If we consider that channel order equals one, the 
residual MSE of the best Wiener solution is 0.5404. By 
augmenting this number, we obtain Tab. 6. There is a 
significant qualitative jump in the transition from  
order = 3 to order = 4. For higher orders, the system 
experiences a timid MSE reduction. We thus consider 
order = 4 a reasonable estimate. For the sake of illustrating 
the method robustness, we can observe that an 
overestimated order = 5 would lead to two “good 
estimates”: hest = [0.9447 1.2689 -0.3521 0.6726   -0.0921] 
and hest = [0.0790 0.9588 1.2958 -0.3249    0.6878]. The 
first solution corresponds to addition of a zero after the 
significant coefficients and the second, to the addition of a 
zero before them. 

 
TABLE 6 

 ORDER ESTIMATION PROCEDURE 
Chosen 
Order 

Residual 
MSE 

1 0.5404 
2 0.2430 
3 0.1817 
4 0.0221 
5 0.0192 
6 0.0158 

 
 

VI. CONCLUSIONS 
 

The objectives of this work were twofold: to 
propose and analyze an equalization framework based on 
genetic algorithms as well as a method for blind channel 
identification.  

Results show that GAs can be successfully used in 
the adaptive equalization problem. They possess several 
desirable features which contribute to the verified good 
performance and justify its choice as the basis of the whole 
proposed  approach. 

One future task is, in our opinion, to look for 
memetic operators, i. e., evolutionary procedures based on 
the equalization problem peculiarities. This may help to 
reduce computational cost, which is still somewhat high, 
and can contribute to improve the search effectiveness. We 
also consider a very important task to look for new GA 
betterments in the future. Additional motivation comes 
from the concrete possibility of applying this framework to 
nonlinear supervised and blind equalization. 

The identification method was successful. Its central 
idea was confirmed but a deeper study remains to be 

carried out to well acess all potentialities of the approach. 
It is also important to provide a comparative account on 
this and other blind identification methods and a careful 
test under noisy conditions. Noise influence certainly can 
be rather pernicious, for it can provoke a drift from 
“channel inversion”  solutions. Clustering methods can be 
an effective countermeasure to this drawback.  
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