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Abstract- The first aim of this work is to extend some recent and
important results on the equivalence between Shalvi-Weinstein and
Constant Modulus methods, by including the so called Generalized
Constant Modulus criterion and its corresponding stochastic
algorithm. Such method avoid the power restriction on the
optimization process, based on the idea that any constant modulus
signal at the output of the equalizer represents the achievement of
equalization. We show the equivalence between this alternative
criterion and the Shalvi-Weinstein one. As far as the corresponding
algorithm is concerned, we introduce a study on an alternative
stochastic approximation, which leads to an increased performance
in terms of convergence rate. The behavior is analyzed in terms of
the stochastic gradient vector and evaluated as a function of the
algorithm parameters. The dependence of the algorithm in terms of
its initial conditions is also analyzed and a modified center-spike
procedure is proposed to attain an improved convergence behavior.

1. INTRODUCTION

The interest in blind deconvolution techniques for
digital communications systems has considerably
increased in the last years, as well as the proposition of
new algorithms and analysis tools. For that reason, it is
important to investigate the similarities and differences
between these new approaches and some already
consolidated techniques. This is the main motivation of
the present paper.

For instance, as far as blind deconvolution criteria are
concerned, the relationships between Shalvi-Weinstein [5]
and Godard [2] criteria have been stated in [6]. Such
equivalence takes into account the power restriction,
which poses that the equalizer output and the transmitted
signal have the same power. A first issue of this paper is
to extend the study in [6] to the case where the power
restriction is not considered. With this objective, we
consider the method proposed in reference [1], which
leads to an alternative CMA-based algorithm. Then we
show that the criterion used in [1] is equivalent to the
Shalvi-Weinstein criterion, without the power restriction.

As far as adaptive algorithms are concerned, references
[8] and [9] show that super-exponential and gradient
search methods are equivalent. Clearly CMA [2,3] is
included in such analysis since it is a gradient search
algorithm. Then, in the light of these works, we study the
case of the algorithm in [1], where the constant modulus
condition is generalized by the absence of power

restriction. We show that the interesting performance of
this technique is mainly due to a non-conventional
stochastic approximation method, employed in [1] with no
major analysis.

Such study allowed us to provide a more systematic
comparison between the algorithm in [1] and the classical
CMA and Super-Exponential (SEA) algorithms [4]. It also
opens perspectives in obtaining effective algorithms, in
terms of convergence rate, by using non-conventional
stochastic approximation methods.

This paper is organized as follows. Section 2 presents a
brief review on the relationships between the Constant
Modulus (CM) and the Shalvi-Weinstein (SW) criteria.
The generalized constant modulus (GCM) scheme
proposed in [1] is revisited in Section 3. Section 4
discusses the non-conventional stochastic approximation
in GCM algorithm. The performance of such algorithm is
evaluated and compared with the CM and SW techniques
in Section 5. Section 6 discusses the effect of initialization
on the algorithm as well as a modification in the center-
spike procedure, which results in an improved
convergence rate.  Finally the conclusions are presented in
Section 7.

2. A BRIEF RECALL ON SHALVI-WEINSTEIN AND

CONSTANT MODULUS CRITERIA

The constant modulus criterion is given by [3]:
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where E[.] is the expectation operator, yn is the equalizer
output signal and r  is given by:

4 2| | / | |n nr E a E a   =     (2)

where an is the transmitted symbol.
This criterion penalizes deviations of the equalizer

output signal from a constant modulus defined by r .
The Shalvi-Weinstein criterion is given by [4]:
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fourth order cumulant of the equalizer output signal, k=3
when  yn is a real sequence and k=2 when the process is
complex and circularly symmetric.

Now let us consider that 
2 2

n nE y E a   =    holds for

SW criterion.  It means that the equalizer output has the
same power of the transmitted signal. In this case, it is
shown in [6] that CM and SW criteria have the same
convergent points. Thus the resultant algorithms search
for the optimal points of the same cost function, which
belongs to the family of Donoho’s deconvolution
objective function [7].

The CM [2,3] and the SW [4] algorithms can be
respectively written as:

( )2*
1n n n n ny y rµ−= − −w w u (4)

and

( )2*
1n n n n n ny y rδ−= + −w w Q u (5)

where n
T
nny uw=  is the equalizer output signal,

wn=[w0 w1 …wL-1]
T is the equalizer tap vector,

un=[un un-1 …un-L+1]
T is the equalizer input signal vector, µ

is the adaptation step size, 2 4/a aC Cδ =  and Qn estimates

the inverse of the autocorrelation matrix of the equalizer
input, updated by:
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where β is constant. The role of matrix Qn is to provide a
prewhitening operation over the channel output [5]. It is
worth to note that the gradients of (1) and (3) are
respectively given by:
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Then it can be noted that the main difference between
expressions (7) and (8) is the term yr in (8) instead of the
constant r  in (7). However, when equalization is
achieved, the following equality holds:
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In such conditions, it comes from equations (7) and (8)
that the gradients of both criteria CM and SW will vanish
for the same stationary points.

To replace the term yr  by r  corresponds to previously
pose the power restriction in the SW gradient
computation. That is effectively done when SEA is
derived from the SW criterion [4]. Thus, we can confirm
the result in [6] that CMA and SEA with the power
restriction will converge to the same stationary points,
since both adaptation process deal with equivalent
gradient vectors.

3. GENERALIZING THE CONSTANT MODULUS

As well as replacing yr  by r  in (8) leads to impose the
power restriction on the SW criterion, we could untie the
fixed constant modulus r  in (1), so that an alternative
algorithm could be carried out without power restriction.
This could be achieved by replacing r  by a term
depending on y. However, the capacity of recovering the
constant modulus property at the equalizer output must be
preserved.

In this sense reference [1] proposed the following
equalization criterion:
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so-called the Generalized Constant Modulus (GCM)
criterion, because it did not establish a fixed value for the
equalizer output modulus. Its development was based on
the idea that any constant modulus signal, at the output of
the equalizer, represents the achievement of equalization.
A simple automatic gain control (AGC) can then correct
the output signal level, if necessary.

The GCM approach has been successfully applied in
different cases, including space-time processing [10].
Nevertheless a more theoretical investigation about the
corresponding criterion and adaptive algorithm, in the
light of the classical techniques, had not yet been carried
out.

As far as the GCM criterion is concerned, it is
interesting to compare (10) with the SW criterion in (3),
since both expressions do not consider the power
restriction. After some manipulations it comes:
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Thus, a clear equivalence holds, so that GCM criterion
seeks the same optimal points of SW criteria, what
includes it into the family of Donoho’s deconvolution
objective function.

Hence, the algorithm resulted from GCM criterion can
be considered as belonging to the Shalvi-Weinstein family
of algorithms, but without the power restriction. As shown
in the next section, such algorithm is derived from an
instantaneous version of (10), so that a most careful study



about this alternative stochastic approximation must be
carried out in order to well evaluate the algorithm
behavior.

4. THE GCM STOCHASTIC ALGORITHM

As posed in [1], the criterion in (10) is related to the
signal-to-envelope variation ratio (SVR), a parameter for
signal quality measurement given by:
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The SVR expresses how close a signal is from a
constant modulus property.

Based on the fact that SVR is an instantaneous measure,
the so-called Generalized Constant Modulus Algorithm
(GCMA) was derived in [1] by posing the stochastic
approximation over the original criterion in (10) and not
over its corresponding gradient. For a number of cost
functions, both procedures lead to the same result. This is
not the case of the GCM function and such feature has
shown to be rather favorable as far as the algorithm
performance is concerned, as shown in the sequel.

First let us define the following stochastic criterion,
from (10):
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what leads to:
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Then GCMA is given by:
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where µ is the adaptation step size. The terms z and b  are
calculated by time averages:
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where λ is the forgetting factor.
To provide a performance evaluation of GCMA and

compare this algorithm with CMA and SEA, it is
interesting to access the behavior of the corresponding
gradient vector. It is easily seen that equation (14) can be
separated in two terms:

2 2 2* * * *ˆ [ ] [ ]y
n n n n n n n n n n n
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The first one, TI, is similar to (7) and (8), while the
second one, TII, does not appear in those equations. It can

be shown that E[TI] corresponds to the SW gradient
vector while E[TII] = 0.  This indicates that GCMA is
expected to have a different behavior during the transient
period. Meanwhile the effect of vector TII is not so
evident and must be better evaluated by simulations.

5. PERFORMANCE EVALUATION AND

SIMULATION RESULTS

In the presented simulations, the following measure of
intersymbol-interference (ISI) was used to evaluate the
equalization performance:

2
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s

ss

(s) n

n −

=
∑

, (18)

where ns  is the nth element of the impulse response of

combined (channel + equalizer) system and maxs  is the

maximal absolute value of ns .

Taking the value of ISI achieved by the SEA as a
reference, and posing all adaptation parameters so that the
algorithms converge to the same ISI, to allow a correct
comparison of their convergence speed, we obtained the
results in Figures 1-3. Such figures correspond each one to
a distinct non-minimum phase channel, for which the
zeros are respectively given by 0.2 and 5; 0.5 and 2; and
0.8 and 1.25. To simplify the correct choice of the
adaptation step sizes, the equalizer input was adjusted to
have unit power. The equalizer was kept with 15 taps and
the modulation of the transmitted symbols was BPSK. All
algorithms were initialized using the center-spike method.
Furthermore, there was no addition of noise.

In figure 1 the channel zeros are closer to the origin of
the z-plane, what corresponds to a more uncorrelated
signal at the equalizer input. In such case the three
algorithms have similar performances and CMA and
GCMA present almost overlapped curves.

 As the channels zeros move away from the origin
(figure 2), the performance of GCMA becomes clearly
superior if compared to CMA.

Finally, for zeros which are still closer to the unity
circle (figure 3), what represents the case of most
correlated channel output signal, the superiority of SEA
comparing to the two others is significant. Moreover,
there is a tendency in coming back to a situation of similar
performance between GCMA and CMA.

When considering additive white gaussian noise, we
obtained basically the same results. SEA remains the
faster algorithm, followed by GCMA and CMA presents
the slowest convergence. Once again, GCMA and CMA
performances tend to approximate as the channels zeros
get closer to the origin or to the unit circle. As an
example, figure 4 shows the result obtained using a
channel with zeros in 0.8 and 1.25, a signal to noise ratio
(SNR) of 20dB and a 15 taps equalizer.
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Figure 1: Performance of the algorithms for a channel with
impulse response h(z)=0.1856-0.9650z-1+0.1856z-2, no noise
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Figure 2: Performance of the algorithms for a channel with
impulse response h(z)=0.3482-0.8704z-1+0.3482z-2, no noise
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Figure 3: Performance of the algorithms for a channel with
impulse response h(z)=0.4015-0.8231z-1+0.4015z-2, no noise

Hence, as far as the convergence rate is concerned, it is
interesting to point out two conclusions from the set of
presented results:

i- SEA presents the better performance,
converging faster and such difference is more
significant as the zeros of the channel are
closer to the unity circle
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Figure 4: Performance of the algorithms for a channel with
impulse response h(z)=0.4015-0.8231z-1+0.4015z-2, SNR=20dB

ii- GCMA presents an improved convergence rate
when compared to CMA, except for zeros too
close to the origin or to the unity circle.

In fact the three algorithms are gradient search
approaches. However SEA makes use of matrix Qn to
provide a prewhitening operation, which improves the
convergence rate with an increasing computational
complexity.

Now, to confirm the effect of vector TII in the
convergence rate of GCMA, we simulated a reformulated
version of the algorithm in (15), removing the term TII.
Such algorithm, named GCMAI is given by:
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The result is shown in figure 5. The system
configuration was the same as the one used to obtain
figures 1-3 and the channel used had the following
impulse response: h(z)=0.3482-0.8704z-1+0.3482z-2. It can
be seen that the algorithm had a very poor performance.

Hence, the term TII provides like a favorable
preprocessing over the equalizer input signal. However
such effect becomes negligible for uncorrelated or too
correlated channel outputs.
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Figure 5: Comparing the performance of GCMAI and CMA,
h(z)=0.3482-0.8704z-1+0.3482z-2, no noise



It is worth pointing out that the term TII comes from the
alternative stochastic approximation method, which is the
main feature in the GCMA derivation. As far as
computational complexity is concerned, GCMA cost is
similar to CMA and rather lower than the SEA one.

6. GCMA INITIALIZATION

The effect of initialization in GCMA algorithms must be
investigated in the light of its corresponding criterion, the
characteristics of which were discussed in section 3.

In fact, due to the non-existence of the power
restriction, GCM and SW criteria have an infinite number
of possible solutions. Taking into account the relationship
between CM and SW with the power restriction, studied
in [6], it is expected that the CM minima will be one of
the GCM possible solutions. Figure 6 illustrates such
consideration. We plot the GCMA convergence paths for
a 2 taps equalizer and a channel given by h(z)=1-0.6z-1.
The CM global and local minima are also indicated in the
same figure.
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Figure 6: The convergence of GCM algorithm, µ=0.0025,
λ=0.97

We can see that the GCMA convergence point depends
on the initialization and may assume a value belonging to
a valley of solutions. This valley includes the solutions
obtained by CM criterion.

In section 5, all simulations were carried out using the
center spike initialization, which consists of setting all
taps to zero but one, that assumes unity value. However,
we can expect that, by initializing GCMA closer to its
valley of solutions, the algorithm will converge faster. The
same would happen if we initialized CMA near its global
minimum. The drawback in this last case is that the
solution is not known. On the other hand, from figure 6,
we observe that the two GCMA valleys of solutions cross
the origin of the plane defined by the equalizer taps. Then
if initial taps are set closer to the origin, they will also be
closer to the valley of solutions.

To confirm such affirmation, we initialized the
algorithm with center spike, but setting the non-zero tap to

0.3 instead of 1. The results are shown in figures 7 and 8,
respectively for non-minimum phase channels having
zeros in 0.2 and 5; 0.5 and 2. The equalizer had 15 taps,
no noise was considered and the transmitted signal
modulation was BPSK.
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Figure 7: Changing the initialization of GCMA; h(z)=0.1856-
0.9650z-1+0.1856z-2, GCMA: µ=0.0035, λ=0.7; SEA: β=0.06,
no noise
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Figure 8: Changing the initialization of GCMA; h(z)=0.3482-
0.8704z-1+0.3482z-2, GCMA: µ=0.00025, λ=0.8; SEA:
β=0.0036, no noise

Figures 7 and 8 indicates a real gain in performance,
particularly in figure 8, where the algorithm with the new
initialization converges 2500 iterations before the
traditional one. Clearly GCMA still does not achieve the
SEA performance, but it becomes even better than CMA.

However, it is important to note that when all equalizer
taps are set to zero, the denominator of GCMA cost
function in (10) vanishes. For that reason, the non-zero tap
at the initialization procedure should not have a very small
value. As this value approaches zero, the algorithm
becomes more unstable, requiring a smaller value for the
adaptation step size µ. By simulations, we verified that for
values around 0.3 a good trade-off between convergence
rate and stability could be attained.



7. CONCLUSION

The interest in investigating the similarities and
differences between new and consolidated techniques of
blind equalization is the main motivation of the present
work. In this sense, a theoretical study and a performance
evaluation of the so-called GCM criterion and algorithm
was carried out in the light of the Shalvi-Weinstein
criterion and some previous results on SW and CM
equivalencies.

The GCM criterion was shown to be equivalent to the
SW one and its corresponding algorithm (GCMA) was
more deeply studied. The new obtained results concern its
non-usual stochastic approximation and the dependence
on initialization. As a consequence, a modified center-
spike procedure was indicated with a significant gain in
the convergence rate.

Comparing it with CMA and the SEA, we concluded
that GCMA usually outperforms CMA, due to the effect
of the alternative stochastic approximation method. The
interest is that such performance is achieved without using
a prewhitening auto-correlation matrix, i.e., with a lower
computational cost when compared to the SEA.

The overall results of this paper confirm the interest in
dealing with a more unified view on the different blind
equalization methods, in order to improve the theoretical
framework of this field as well as to indicate alternative
and efficient new techniques.
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