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Abstract—This paper establishes the condition for the Rocha-Massey homo-  homophonic substitution scheme is determined, whgrede-
phr?”ic C?di”g SChe”v\ﬁ] to have LOVIVH fsggf;‘,jt‘?‘ncy tha”t_‘he ;e”d%KUh”T'r'\]/'aSS%’ notes the binary entropy function amd is a positive integer
scheme, for sources whose symbol probabilities are rational numbers. The con- : e o )
dition is that each probability, in the probability distribution of the symbols of deter_mlned by the So_urce_ PrObab'“ty d_lStI’Ibl_Jtlon. BOt_h h_omo
a discrete memoryless source, must contain only countably infinite binary ex-  Phonic schemes require finite memory in their respective imple-
pansions. Both schemes are briefly reviewed and the condition for achievingthe  mentations despite the fact that an unbounded number of coin

minimum redundancy h(2~"*) in a perfect homophonic substitution scheme is ; ; finite memor
determined, where h(.) denotes the binary entropy function and m is the least tosses to select a homophone is required. The te memory

positive integer for which all probability entries in the expanded alphabet of the description of the JKL scheme follows that of [6].
Rocha-Massey scheme have denominators which are powers of 2.
Il. THEORETICAL BACKGROUND

. INTRODUCTION For simplicity, we consider only the homophonic coding of

Homophonic coding is a technique whereby a multiplicity of the output sequend€,, Us, Us, ... of a K-ary discretemem-
“homophones” are probabilistically substituted for each plaireryless source (DMS). The homophonic coding problem then
text letter. Each homophone is one-to-one mapped to a binagduces to that for a singlE-ary random variablé’, but the
word so as to hide the redundancy of the resulting new “plaitheory is easily modified to handle general sources with mem-
text”. In secret-key cryptographic systems the use of homery simply by replacing the probability distribution foF; with
phonic coding increases the unicity distance of the cipher [khe conditional probability distribution fdf; given the observed
and hence makes it harder to break, at the cost of some plaintgxtues ofU;, Us, ..., U;_1. We assume that the sourbehas
expansion. a probability distribution with rational entries onl; (u;) =

In traditional homophonic coding, each letter of the original; /n;, 1 < i < K, wherem; andn; are positive integers
message is replaced by a substitutt@nophonein a larger al- andn; is as small as possible. #; is an integer power of 2,
phabet to form the plaintext message that is then encrypted. ThM optimum homophonic coding operates with a finite upper
homophone is chosen uniformly at random from a set of subskieund on the number of fair coin flips required to select a ho-
tutes reserved in the larger alphabet for that letter in the orighophone. Our interest is in the case whereis not a power
nal alphabet, the size of these sets being (roughly) proportiomdltwo so that there is no upper bound on the number of coin
to the relative frequencies of the letters in the original alph#lips that may be required. We assume with no loss of essential
bet. Consequently, the overall probability distribution of homaogenerality that all values ofU have non-zero probability and
phones is a uniform distribution and all homophones have tiigat K > 2. The homophon& for U takes values in the set
same length. In 1988, @ither [2] introducediariable-length  {v;,v,,... }, which may be finite or countably infinite, and is
homophonic substitution, in which the homophones for a partic-characterized by the fact that for eaglthere is exactly oné
ular letter can have different lengths and different probabilitiesuch that?(V = v;|U = u;) # 0. For a binary variable-length
of selection, and showed that this technique could be usedHomophonic encoding/ = (X1, X»,..., Xw) whereX; is a
hide in the homophonically coded sequence all the redundarisiiary random variable and where the lengthof the homo-
in the original plaintext and thus can be used to construct whatione is in general also a random variable. It is required that the
Shannon calls atrongly ideal cipher [1] while also reducing homophones be assigned in such a mannerXhats ... Xy
plaintext expansion. is a prefix-free encoding df’, i.e., such that the homophones

The purpose of this paper is to prove a necessary and suffi= (z,,z,,...,,) are all distinct and none is the prefix of
cient condition for the Rocha-Massey (RM) homophonic codknother. Homophonic coding frfect if the new plaintext se-
ing scheme [5] to have lower redundancy than the Jendal-Kuhjuence is irredundant, i.e., if the componefits X, ..., Xw
Massey (JKM) scheme [3], for sources whose symbol probabdf the homophon&” are independent and uniformly distributed
ities are rational numbers. The condition is that each probaliinary random variables, the homophonic coding is said to be
ity, in the probability distribution of the symbols of a discreteperfect, and is said to beptimumif it is perfect and itsplain-
memoryless source, must contain only countably infinite binatgxt expansion (defined as the average length of a homophone,
expansions. Both schemes are briefly reviewed and the congi37], less the entropy of a source letter) is as small as possible
tion for achieving the minimum redundankf2 ~™) in a perfect [3]. The upper boun&[W]—H (U) < 2 bits on the redundancy

with optimum binary homophonic substitution was stated in [3]
The author acknowledges partial support of this work by the Brazilian N§ d proved in [4]
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Grant No. 304214/77-9. It was shown by JKM in [3Proposition 3] that a binary ho-
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mophonic coding scheme is optimum if and only if, for every3/4)(1/3) = 1/4 and P;(u2) = (3/4)(2/3) = 1/2 so
valueu; of U, the conditional probabilitie®(V = v;|U = u;) that at most two fair coin flips are needed to select any ho-
of the homophones far; are such that the probabilitigy1’ = mophone. The coding of is irredundant since its letters all
vj) = P(V =v;,U =u;) = P(V =v;|U =w;)P(U = u;) have probabilities that are negative integer powers of 2 so that
of these homophones are equal (in some order) to the ter@fV] = H(U) in this example. The average number of letters
in the unique decomposition d?(U = wu;) as a finite sum of from the sourcé’ that are encoded with the encoding of one let-
distinct negative integer powers of 2 when this is possible, i.¢er of the sourcé’ is p. The redundancy relative to the souée
whenP(U = u;) can be written as a ratio of integers in whiclof the new scheme is thd&{ W] —pH (U) = H(U) —pH(U) =
the denominator is an integer power of 2, and as an infinite syi2 — (3/4)h(1/3) = 0.811, which is substantially better than
of distinct negative integer powers of 2 otherwise. In the forméhe redundancy 1.082 for the JKM homophonic codin§y of
case, the homophone for a source letter can be selected usmgi
the results of at most as many flips of a fair coin as the exponéht | mplementing the RM Scheme
of 2 in the denominator oP(U = u;), while in the latter case  The RM scheme could be implemented as follows. One first
there is no bound on the number of flips that may be require@es a fair coin to test for the occurrence of an event of prob-
[3]. ability Py (A) = 27™, which requires at most: flips of the
fair coin. If the event occurs, the dummy lettdrbecomes the
[1l. THE ROCHA-MASSEY SCHEME output of U. Otherwise, one calls on the souleto emit a let-

ing coding scheme for which better than “optimum” homolust removes the dummy letters from the reconstructed output
phonic coding was possible, i.e., a homophonic coding scheifauence o’ to obtain the output sequencelof

which in many cases outperformed the standard JKL sche

under the assumption that the soutcéas a probability distri- "B Bounds on-Redundanq./- _ _
bution with rational entries only. A lower bound on redundancy The following proposition was proved in [5] and is repro-
was then established and the conditions for meeting this bougiéced here for completeness.

were proved. Let: denote the least common denominator of Proposition1: LetU be aK-ary discrete memoryless source
these rational probabilities, i.e., 18 (u;) = m;/n, 1 < i < whose letter probabilities are all rational numbersyldie the

K, wherem; andn are posm\/e |ntegers and is as small as least common denominator of these probabllltles when written

possible. Ifn is an integer power of 2, JKM optimum homo-&s reduced fractions, 18f = [log, n], and lepp = n/2". Then

phonic coding operates with a finite upper bound on the nurie homophonic coding of the augmented sourcas described

ber of fair coin flips required to select a homophone. The RIRbove achieves a redundangyi’] — pH (U), whenp # 1,

scheme is focused in the case whetis not a power of two so satisfying

that there is no upper bound on the number of coin flips that ma: i _ 53-N

be required. Hereafter then, we assume fhagn] > logn W) < BW] = pH(U) < hip) +2 - 27N, all N >3, (1)

where[log n] denotes the smallest integer at least equiaiga  and satisfying the equality

and where all logarithms are to the base 2. The “trick” in the z _

RM scheme is to augment the souidewith a “dummy” let- EW] = pH(U) = h(p) @

ter chosen so that all letters of the augmented source canvideenever (1) the letter probabilities 6f written as fractions

written as rational numbers with a common denominator thatith denominator. all have numerators that are integer powers

is a power of 2. LetA denote the “dummy” letter so that of 2 and (2)n = 2%V — 2¢ for somei with 0 < i < N — 2 (which

{uy,us,...,ux,A} is the output alphabet of the augmentetivo conditions are always satisfied whan= 2).

source that we denote by and letPg;(A) = 2%, wheres Example2: Consider the DMSU with letter probabilities

is the least integer such that — 1 is divisible by the product 2/3,1/6 and1/6. Heren = 6 and N = 3. The two

n' of the odd factors of.. This choice forces us then to chooseeonditions for (2) to hold are satisfied so the redundancy is

Py (u;) = (1 —27%)Py(u;) = (ri/2%)/(n'/n)for1 <i < K, E[W]-pH(U) = h(p) = h(3/4) = 0.8113.

wherer; = (2° — 1)m;/n’ is an integer. Thus, the letters of the

augmented source all have probabilities that are rational num-

bers with a common denominator ®f'n/n'. It follows that at So far the main complaint against the practical use of the JKM

mostm + log(n/n') fair coin flips will be required to choose scheme was due to the apparent need to store a dictionary with

the homophone if optimum standard homophonic coding is nosin unbounded number of homophonic codewords, and less ef-

applied to the output of this augmented source. ficient but “more practical” solutions have appeared [7] [8] in
Example1: Let U be the binary memoryless source wittthe literature. We review next the modified JKM scheme as in-

Py(uy) =1/3 andPy(usz) = 2/3. The JKM homophonic cod- troduced in [6]. Essentially the modified JKM scheme sequen-

ing uses an infinite decomposition of ba®y (u;) and Py (u2)  tially constructs each homophonic codeword, as a concatena-

as sums of negative powers of 2 and results in an expected caiile of shorter codewords appropriately selected from a finite

word lengthE[W] = 2. The redundancy i&[WW] — H(U) = set of codewords derived from the source probabilities. It turns

E[W] - h(1/3) = 2 —0.918 = 1.082, whereh(.) denotes the out that for any probability distribution with only rational num-

binary entropy function. Augmenting this source with a dummiger entries a sequential implementation of the JKM scheme ex-

letter A of probability P;(A) = 1/4, we haveP;(u;) = ists with a finite number of binary codewords. The modified

IV. THE MODIFIED JKM SCHEME
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JKM scheme avoids the memory problem of having to storesaibsets. Each non-periodic term corresponds to a subset with a
countably infinite number of homophonic codewords in the casingle homophone and each periodic term corresponds to a sub-
wheren; is not a power of 2. set with a countably infinite number of homophones. Our selec-
Initially, each source probability is expanded as a sum of netjon of a homophone is done in two parts, first we select a subset
ative powers of 2 and then we identify in each such expansiand then we select a homophone within this subset. Suppose
the periodic and the non-periodic components, where by a pdiiat the subset selected corresponds to a non-periodic compo-
odic component we mean the set consisting of the terms of aent.The corresponding codewordiris made the output df .
infinite geometric series whose first term and ratio are both neguppose now that the subset selected corresponds to a periodic
ative powers of 2, and by a non-periodic component we megamponent, say thg periodic componeny, = 1,2, ..., .J, in
the set consisting of a finite number of negative powers of 2. the base 2 expansion & (u;).
Example 3: The expansion oPy(uy) is Py(u) = 1/5 = ) -
Z;)io(l/S)(l/lﬁ)i + E;’io(l/lﬁ)(l/lﬁ)i, i.e., 1/5 is decom- A. Implementing the Modified JKM Scheme
posed as a sum of two periodic components (two infinite geo-we assume that the souréehas a probability distribution
metric series) whose first terms arg8 and1/16, respectively, with rational entries onlyPy (u;) = mi/ns, 1 < i < K, where
and both series have the same ratia6. m; andn; are positive integers ang; is as small as possible.
Next we construct a binary prefix-free codeusing as code- |f p; is an integer power of 2, standard optimum homophonic
word probabilities the non-periodic components, and the firgbding operates with a finite upper bound on the number of fair
term and ratio of each periodic component, resulting from th&in flips required to select a homophone. Our interest is in the
decomposition of the source probabilities, with the remark thahse where:; is not a power of two so that there is no upper
identical ratios are associated to the same codeword. bound on the number of coin flips that may be required. We
Example 4. Consider thek' = 2 DMS with Py (u1) = 1/5  recall from [3] that for achieving lowest redundancy with bi-
and Py (u2) = 4/5. We have earlier obtained the expansion afiary homophonic coding all the terms in the base 2 expansion
Py (uy) and notice thaPy (u2) = 4/5 = %2 (1/2)(1/16)*+  of any given source probability must be distinct and that each
> ioo(1/4)(1/16)%. Since the ratial /16 is the same for both such term is associated one-to-one with a homophone in a set
infinite geometric series in the expansionfaf(u,) = 1/5as denoted by/’. In general, one first calls on the souf¢eo emit
well as for the two infinite geometric series in the expansion &f letter, say;, 1 < i < K, and then performs an experiment
Py (uz) = 4/5, only one codeword is allocated to this commotto select a homophone associated with Suppose that the ho-
ratio. LetS; denote the sury_;° (1/8)(1/16)* and letS, de- mophone to be selected corresponds to one non-periodic com-
note the sund_:° (1/16)(1/16)". It follows thatS; = 2/15 ponent. The corresponding codewordlris made the output of
and thatS, = 1/15. Given thatU = u,, the probability of V7. Suppose now that the homophone to be selected corresponds
selecting a term from the suy is (2/15)/(1/5) = 2/3 and to one of the terms of thg" periodic componeny, = 1,2,. ..,
the probability of selecting a term from the s#fnis 1/3. Next in the base 2 expansion @¥;(u;). A binary experiment is
we use the non-periodic components, and the first term and then performed whose outcom&s and E; have probabilities
tio of each periodic component, resulting from the decomp@?(E;) = 1 — P(A;;) and1l — P(E;) = P(A;;), respectively,
sition of the source probabilities, to construct a binary prefixwhereP(A;;) is a negative power of 2 equal to the ratio in the
free codeC’, with the remark that identical ratios are associategbrresponding geometric series. We shall refer toAhgs as
to the same codeword. We have thus the set of probabilitiggmmy symbols and will write\ if only one dummy symbol is
{1/2,1/4,1/8,1/16,1/16} containing the first terms and therequired. IfE; occurs then the codeword @ associated with
common ratio, which is then used to construct the following sétie first term of theg'*” periodic component becomes the output
of codewords0, 10, 110, 1110, 1111}, respectively. of V, corresponding to the homophone denoted by Other-
For example, consider thE = 2 DMS with Py (u1) = 1/5 wise, i.e., if E; occurs,u; is stored, the codeword ifi associ-
and Py (u2) = 4/5. We have earlier obtained the expansion adted with the ratio (dummy symbol) becomes the first symbol
Py (uq) and notice thaly (u2) = 4/5 = >°52,(1/2)(1/16)* +  of the homophone under construction. The binary experiment is
> oo(1/4)(1/16). The ratiol/16 is common to the resulting repeated as many times as necessary until the éveniccurs
infinite geometric series in the expansion of b&W(u;) = 1/5 and the codeword i€’ associated with;; becomes the last sym-
and Py (uz) = 4/5, therefore only one codeword is allocatedol of the homophona ;;A;; ... A;;v;; which is output as the
to this common ratio. We have thus the set of probabilitieslue assumed by. For example, if£}; occurs three times be-
{1/2,1/4,1/8,1/16,1/16} containing the first terms and thefore E; occurs, the homophone for, will be A1 Ay Aqjv1;:.
common ratio, which is then used to construct the following set Example 5: Consider once more th& = 2 DMS with
of codewords(0, 10, 110, 1110, 1111}, respectively. Each term Py (u;) = 1/5 and Py (us) = 4/5. The two periodic compo-
in the base 2 expansion of a given source probability is assoments inP;; (u;) suggest that we represent by two countably
ated one-to-one with a homophone in a set denoteld by infinite subsets of homophones, denoted’asandV;», respec-
In general, one first calls on the soui¢eo emit a letter, say tively, whereP(V = Vi) = Y72 (1/8)(1/16)" = 2/15 and
u;, 1 < i < K, and then performs an experiment to seled®(V = Vi2) = >°22,(1/16)(1/16)" = 1/15. Given thatU =
a homophone associated with. Here we introduce a slight u;, it follows thatV;, is selected with probabilit§/3, or Vi, is
but significant variation on the approach followed in the JKMelected with probability /3. The homophones corresponding
scheme. Instead of considering from the start the set of all ho-u; are the elements in the subsgéis andV:,, whereV;; =
mophones corresponding & = wu;, we partition this set into {vi1, Avir, AAwvyy,...} andVis = {v12, Avia, AAvy,, ...}
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We notice further that the probability of thé&* element inV;;  redundancy i (W)—(15/16)H (U) = 31/16—0.826 = 1.111

is P ' (A) Py, (u1) = (1/16)'~'(1/8) and, correspondingly with P(A) = 1/16.

in Vs is Pt (A) Py, (ur) = (1/16)i1(1/16), respectively, This example shows that not always the RM scheme produces
for1 < i < oco. Similarly, if U = us, it follows that Py (us) = lower redundancy than the JKL scheme. The reason for the JKL
4/5 = Efio(1/2)(1/16)i+2;§o(1/4)(1/16)i =8/15+4/15 outperforming the RM scheme in this case is the presence of a
and thusP(V = V) = 8/15andP(V = Vi) = 4/15, etc. non-periodic component in the binary expansion of one of the

With a little abuse of notation we write probabilities. As we show next, in general, for aliyary DMS
with a probability distribution with rational entries only, the RM
Vii = {110,1111[110,1111|1111|110,.. .} scheme will give a lower redundancy than the JKM scheme if
Vip = {1110 1111|1110 1111|1111|1110 } and Only if each one of the DMS probablllty entries have peri-
' ’ T odic components only.
Vor = {0,1111]0,1111]1111|0,...} P 4

Vo = {10,1111[10,1111|1111]10,.. }, V. THE MAIN RESULT

Suppose that the binary expansionff (u;), 1 < i < K,

wherevy; is mapped tal10 in Vi, vi2 is mapped tal110 in - pag periodic components only, i.e., suppose that

V12, v21 IS mapped td in V2; andwvys is mapped td0 in Vas.

FurthermoreA is mapped td 111, and the symbat|b denotes e im Yl 27T

the concatenation ef andb. Py(ui) = Z Z 2™ T 1_9-m -

The success of the sequential implementation of the JKM j=11=0

scheme relies on the truth of the following proposition [6]. It follows for the RM scheme thatPf](ui) = (1 -

Proposition 2: In any probability distribution with rational 2=™) Py (u;) = Z] 27", 1 < i < K. For standard ho-
entries only, a probability can always be decomposed in basendphonic subst|tut|on it follows that
as a sum of a finite number of distinct non-periodic components _
plus a finite number of distinct periodic (infinite geometric se- H(V)=H{U)+HV|U) (3)
ries) components whose first term and ratio are both negataed similarly, for the augmented source of the RM scheme it
powers of 2. follows that R R o
In general, an unbounded number of coin tosses may still be re- H(V)=H({U)+ H(V|U). 4)
quired to produce a homophone in our implementation of th§jhce in the RM scheme
JKM scheme, however that has no influence in the memory size . . .
for storing homophonic codewords, and as shown in [3] the ex- HU) = (1-2"")H(U) +h(2"™), ®)
pected number of bits needed to select a homophone is 4. Bg-combining (3),(4) and (5), and makingy,, = 1 — 2™, it
coding is immediate: in the received binary sequence (concatgiows that
nation of codewords fron®’) one just deletes the codewords ~ m
representing the dummy symbols and maps back to the corre- H(V) = BnH(V)+h(2™")
spondingu;’s the remaining codewords.

Example6: Consider thg = 2 DMS with Py (u;) = 7/10 — [BuH(V|U) - H(V|U)] (6)
and Py (uz) = 3/10. For the binary expansion %10 it fol-
lows thatn| = 5 ands; = 4, th

WS ny =95 S1 us = BnH(V)+h2 ™)
(15/16)(7/10)  21/32  1/2+1/8+1/32

Pulu) = 21/32 1-1/16  1-1/16 —BmZPU (w)[H(V|U =u;) —HV|U =w)], (7)
which we write as where in (7) we used the fact thBf, (u;) = (1 — 27™) Py (u;).
_ oo i oo i We observe in (7), however, that the terms in the expression for
Pu(un) = (1/2) 22i=9(1/16)" + (1/8) 32i=(1/16) H(V|U = u;) are contained in the expression (V' |U =
0 i u;), and since both entropidé(V |U = u;) andH(V|U = u;)
+ (1/32) 32i=0(1/16) are nonnegative, it follows thal (V|U = u;) > H(V|U =
i Ji —Tj . . -
=1/2+ (1/8) .20, (1/16) + (1/16) 3.2, (1/16)’, u;). SincePy(u;) = 3252, 277, whereJ; and ther; are pos
itive integers, it foIIows foreachi, 1 < j < J;, thatV = v;;
where in the last step we used the fact that with probability P(V = v;;) = 274, and thus we can write
- - P(V = ’U”|U = Uz) = 2—7"]'/[(1 — 2_m)PU(ui)] = Qyj. It
(1/2) Z(l/lﬁ)i +(1/32) Z 1/16)" = (1/16) 2(1/16) follows for the RM scheme that
i=1 i=0
‘ HVI|U = u;) = Zal] log a;; (8)
Similarly we obtain Py(us) = (1/4)3°72,(1/16)F +
(1/32) 32, (1/16)". If we apply the JKM scheme to this i .
source we obtain the redundanEyW) — H(U) = 42/25 — . = ZTJO‘” log ——— B +log(1 —27™). 9)
h(3/10) = 0.799 while for the RM scheme the corresponding = (ui)
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Similarly, sincePy (u;) = Y72, 3°7%, 275, it follows that
P(V = v jrim|U = u;) = 2777I™ / Py (u;), and we can write
for standard homophonic coding

HVIU =u;) ==Y

=0 j=1

Ji 9—rj—lm 9—rj—lm

lo
PU (Uz & PU (ul)

i: i —log—t— + M2 (g
P U By T 1= 2mm

Subtracting (8) from (10) and multiplying the result by —
27™) Py (u;) we have

(1—2"™)Py(u)[H(V|U = u;) - HV|U = ;)]
= Py(u)h(27™).  (11)

Finally, taking (11) into (6) it follows that

H(V)=(1-2"™)H(V). (12)

However, since all probabilities in botti and V are negative
powers of 2, it follows thatZ (W) = H (V) and thatE(W) =
H(V), and thus we rewrite (12) as

E(W)=(1-2"™EW). (13)

Under the assumption we made B9 (u;),1 < i < K, at the
beginning os this section, it follows from (13) that the redun-
dancyp = E(W) — (1 — 2=™)H(U) of the RM scheme is re-
lated to the redundangy= E(W) — H(U) of the JKM scheme
asp = (1 — 27™)p. We have thus proved the following.

Proposition 3: For a DMS source with a probability distri-
bution with rational entries only, and such that each proba-
bility entry has a binary expansion with periodic components
only, the redundancy = E(W) — (1 — 2=™)H(U) of the
RM scheme is never greater than the corresponding redundancy

= E(W) — H(U) of the JKM scheme. The redundancjes
andp are related ag = (1 — 27™)p. Furthermore, the least
redundancy of the RM scheme is achieved for the leasor
which all probability entries in the expanded alphabehave
denominators which are powers of 2.

REFERENCES

[1] C.E.Shannon, "Communication Theory of Secrecy SysteBa! System
Tech. J., vol. 28, pp. 656-715, Oct., 1949.

[2] Ch. G. Qinther, “A Universal Algorithm for Homophonic Coding”, pp.
405-414 inAdvances in Cryptology- Eurocrypt’ 88, Lecture Notes in Com-
puter Science, No.330. Heidelberg and New York: Springer, 1988.

[3] H.N.Jendal, Y. J. B. Kuhn and J. L. Massey, “An Information-Theoretic
Approach to Homophonic Substitution”, pp. 382-394 Advances in
Cryptology-Eurocrypt’ 89 (Eds. J.-J. Quisquater and J. Vandewalle), Lec-
ture Notes in Computer Science, No. 434. Heidelberg and New York:
Springer, 1990.

[4] V. C. da Rocha Jr. and J. L. Massey, “On the Entropy Bound for Opti-
mum Homophonic Substitution’l EEE Int. Symp. on Info. Theory, Ulm,
Germany, 29 June - 4 July, 1997, p. 93.

[5] V.C.daRochaJr.and J. L. Massey, “Better than “Optimum” Homophonic
Substitution”, IEEE Int. Symp. on Info. Theory, Sorrento, Italy, 25 - 30
June, 2000, p. 241.

[6] V. C. da Rocha Jr., “Perfect Homophonic Substitution with Finite Mem-
ory”, |[EEE Int. Symp. on Info. Theory, Lausanne, Switzerland, 30 June -
05 July, 2002.

[7] B. Ryabko and A. Fionov, “Efficient Homophonic CodindEEE Trans.
on Info. Theory, vol.45, no.6, pp.2083-2091, Sept. 1999.

[8] M. Hoshi and T.S. Han, “Interval Algorithm for Homophonic Coding”,
|EEE Trans. on Info. Theory, vol.47, no.3, pp.1021-1031, March 2001.

ITS2002, Natal, Brazil



